Курсовая работа: Анализ данных социологии

Статистические методы анализа включают в себя:

- анализ средних величин;

- вариационный (дисперсионный) анализ;

- изучение колебаний признака относительно его среднего значения;

- кластерный (таксономический) анализ - классификацию признаков и объектов при отсутствии предварительных или экспертных данных о группировке информации;

- логлинейный анализ - поиск и оценку взаимосвязей в таблице, сжатое описание табличных данных;

- корреляционный анализ - установление зависимости между признаками;

- факторный анализ - многомерный статистический анализ признаков, установление внутренних взаимосвязей признаков;

- регрессионный анализ - изучение изменений значений результатирующего признака в зависимости от изменений признаков-факторов;

- латентный анализ — выявление скрытых признаков объекта;

- дискриминантный анализ - оценка качества экспертной классификации объектов социологического исследования.

Исследование считается завершенным тогда, когда представлены результаты. В соответствии с целью исследования они имеют различную форму: устную, письменную, с использованием фотографий и звука; могут быть краткими и сжатыми или пространными и подробными; составленными в расчете на узкий круг специалистов или для широкой публики.

Заключительный этап социологического исследования состоит в подготовке итогового отчета и последующем предоставлении его заказчику. Структура отчета определяется типом проведенного исследования (теоретическое или прикладное) и соответствует логике операционализации основных понятий. Если исследование носит теоретический характер, то в отчете основное внимание уделяется научной постановке проблемы, обоснованию методологических принципов исследования, теоретической интерпретации понятий. Затем дается обоснование построения применяемой выборки и - непременно в форме самостоятельного раздела - проводится концептуальный анализ полученных результатов, а в конце отчета излагаются конкретные выводы, возможные практические результаты и способы их реализации. В отчете о прикладном исследовании основное внимание уделяется решению задач, выдвинутых практикой и предложенных заказчиком. В структуре такого отчета обязательны описание объекта и предмета исследования, задач исследования, обоснование выборки. Основной акцент направлен на формулирование практических выводов и рекомендаций и реальные возможности их реализации.

Число разделов в отчете, как правило, соответствует числу гипотез, сформулированных в программе исследования. Первоначально дается ответ на главную гипотезу. Первый раздел отчета содержит краткое обоснование актуальности изучаемой социологической проблемы, характеристику параметров исследования. Во втором разделе описываются социально-демографические особенности объекта исследования. Последующие разделы включают ответы на выдвинутые в программе гипотезы. Заключение дает практические рекомендации, в основе которых лежат общие выводы. К отчету обязательно делается приложение, содержащее все методологические и методические документы исследования: статистические таблицы, диаграммы, графики, инструментарий. Они могут быть использованы при подготовке программы нового исследования [1, с. 358-387].

3. Анализ эмпирических данных социологии

С формальной точки зрения при сравнении эмпирических данных должны соблюдаться следующие правила, необходимые в логике экспериментального анализа:

- два состояния одного процесса сопоставимы, если они содержат хотя бы одно общее свойство или показатель;

- ни один фактор не может быть признан причиной сравниваемых явлений, если в одном случае при регистрации изучаемого явления он имеет место, а в другом - нет (правило согласия Милля);

- вместе с тем данный фактор не может быть причиной изучаемого явления, если в одном случае (исследовании) он имеет место, а само явление не фиксируется, хотя в другом случае (исследовании) дело обстоит так, что регистрируются и явления, и данный фактор (правило различия);

- некий фактор (условие, обстоятельства) не может достоверно считаться определяющим в отношении изучаемого процесса, если в другом случае (в другом исследовании) наряду с ним изучаемому процессу сопутствуют другие факторы.

Эти логические правила, напоминающие о строгости экспериментального вывода, нельзя игнорировать. В зависимости от программных целей исследования анализ полученных данных может быть более или менее глубоким и основательным.

Цель исследования определяет уровень анализа в том смысле, что либо позволяет, либо запрещает прекратить его на какой-то стадии. В полном же объеме, т.е. от первого до последнего шага, последовательность действий социолога при анализе эмпирических данных может быть представлена следующим образом.

Первая стадия - описание всей совокупности данных в их простейшей форме. Предварительно осуществляется общий контроль качества полученной информации: выявляются ошибки и пропуски, допущенные при сборе данных и при вводе их в компьютер для обработки, бракуются какие-то «единицы» выборочной совокупности, не отвечающие модели выборки (коррекция выборки), отсеиваются некомпетентные респонденты (изымаются их данные полностью или частично), производятся другие контрольные действия, которые на социологическом жаргоне называют «чисткой массива». Дальше следует собственно описание: используется аппарат дескриптивной статистики для упорядочения всех данных по отдельным признакам (переменным). Изучаются простые распределения, выявляются аномалии и скошенности, рассчитываются показатели средней тенденции, вариации распределений. Все это необходимо для решения двух задач:

1) общей оценки выборочной совокупности и частных подвыборок (половозрастных, социально-профессиональных и других) с тем, чтобы понять, каким образом особенности выборок будут сказываться на интерпретации того или иного частного вывода и обобщающих заключений;

2) для того чтобы в последующих операциях с данными не утратить представления о составляющих более сложных зависимостей и комбинаций, которыми впоследствии будем оперировать [1, с. 358-387].

Например, в итоговых или промежуточных выводах находят, что такие-то условия деятельности или характеристики людей более важны, чем некоторые другие. Чтобы правильно интерпретировать это заключение, следует вспомнить, каковы основные характеристики выборки, нет ли в ней заметных аномалий. Очень возможно, что в общей выборке доминируют представители определенного социального статуса, возрастной когорты, национальной принадлежности и т.п. С этими их особенностями связаны социальные функции, интересы, образ жизни. В итоге может оказаться, что суммарные выводы неосновательны: они преимущественно объясняются спецификой доминирующей подвыборки обследованных. Чтобы проверить эту рабочую гипотезу, надо расчленить массив информации на соответствующие подвыборки и повторить анализ раздельно для каждой из них, включая доминирующую.

Так устанавливаются ограничения выводов. Обращение к «простой структуре» данных нужно и для того, чтобы при всевозможных комбинациях и сложных построениях не утратить представления об их первооснове. Вдруг «выскакивает» интереснейший факт, какие-то явления неожиданно тесно коррелируют. При попытке объяснить, что происходит, возможно было забыто, что сведения об этих явлениях получены по ответам респондентов на два вопроса одинаковой конструкции, соседствующих в анкете, и что это, видимо, следствие монотонного реагирования на похожие по форме вопросы – они подобны именно в силу психологического эффекта «эхо». Открытия не состоялось. Вторая стадия – «уплотнение» исходной информации, т.е. укрупнение шкал, формирование агрегированных признаков-индексов, выявление типических групп, жестких подвыборок общего массива и т.п.

Генеральная цель всех этих операций - сокращение числа признаков, нужных для итогового анализа. Одновременно достигается первичное обобщение данных, нужное для более глубокого понимания существа изучаемых процессов. Допустим, например, что при контент-анализе по смысловой единице «а» практически информации не было получено (2% всего массива сведений). Сохранив этот пункт, мы потом будем постоянно наталкиваться на нулевые значения. Если можно, целесообразно объединить данную смысловую единицу с подобной ей, укрупнить шкалу. Тогда следует дать уточненную интерпретацию нового признака, теперь достаточно емкого по статистике наполнения. Формирование сводных, агрегатных признаков освобождает от необходимости утомительно интерпретировать малосущественные частности, повышает уровень обобщений, ведет к более емким теоретическим умозаключениям. Одно дело, когда в прикладном – «инженерном» - исследовании анализируют соотносительное значение каждого из элементов производственной ситуации в его влиянии на отношение к работе. И совершенно иначе действуют, если задача состоит в обнаружении социальной закономерности при повторном сравнительном исследовании. Здесь важно обобщить информацию по более емким структурам, например, по всем факторам условий и всем составляющим содержания труда. Поскольку мы знаем частные составляющие того и другого, т.е. аккуратно прошли первый этап анализа, наши дальнейшие операции с данными будут более целеустремленными, экономичными и практичными с точки зрения приближения к основным целям исследования.

На данной стадии, в развитии которой осуществляется переход к анализу взаимосвязей (3-я стадия), будут использоваться довольно сильные операции - факторный анализ, типологизация и подобные им. Очень важно дать необходимые промежуточные истолкования каждого из агрегируемых показателей, ибо это - новые свойства, нуждающиеся в осмыслении, построении соответствующих интерпретационных схем. Как замечает Г.С. Батыгин: «с известной долей преувеличения всю деятельность социолога можно назвать интерпретирующей: случайно попавший в выборку человек интерпретируется как респондент; его жизненные реалии и высказывания интерпретируются в шифрах и «закрытиях» вопросников; первичная социологическая информация интерпретируется в средних величинах, мерах рассеяния и корреляционных коэффициентах; числовые данные должны сопровождаться какими-либо рассуждениями, т.е. опять же интерпретироваться» [8. с. 177]. Тем более нуждаются в построении интерпретационных схем новые емкие признаки, сгруппированные, типологизированные данные. Третья стадия анализа как бы вклинивается в предыдущую. Это - углубление интерпретации и переход к объяснению фактов путем выявления возможных прямых и косвенных влияний на агрегированные свойства, социальные типы, устойчивые образования. Здесь главная опасность - подмена косвенных, опосредованных связей прямыми. Такая ошибка - самая распространенная и менее всего заметная со стороны.

К-во Просмотров: 283
Бесплатно скачать Курсовая работа: Анализ данных социологии