Курсовая работа: Анализ деятельности кредитных организаций

Правило классификации для первого кластера:

Если объем выданных кредитов физическим лицам =большой, объем кредитов, выданных физическим лицам на покупку жилья = малое, объем выданных ипотечных жилищных кредитов физическим лицам = малое, объем выданных кредитов индивидуальным предпринимателям = малое, то класс = 1.

Правило классификации для второго кластера:

Если объем выданных кредитов физическим лицам = малый, объем кредитов, выданных физическим лицам на покупку жилья = среднее, объем выданных ипотечных жилищных кредитов физическим лицам = среднее, объем выданных кредитов индивидуальным предпринимателям = среднее, то класс = 2.

Правило классификации для третьего кластера:

Если объем выданных кредитов физическим лицам = средний, объем кредитов, выданных физическим лицам на покупку жилья = большой, объем выданных ипотечных жилищных кредитов физическим лицам =большой, объем выданных кредитов индивидуальным предпринимателям = большой, то класс = 3.

2.3 Дерево решений

Деревья решений – это способ представления правил в иерархической, последовательной структуре. В узле дерева осуществляется проверка значения некоторой независимой переменной. Если переменная, которая проверяется в узле, принимает категориальные значения, то каждому возможному значению соответствует ветвь, выходящая из узла дерева. Если значением переменной является число, то проверяется, больше или меньше это значение некоторой константы.

Листья деревьев соответствуют классам. Каждый лист дерева представляет собой один класс. Путь, ведущий от корня дерева к этому листу, соответствует правилу классификации. Отметим, что один и тот же класс может быть указан в нескольких листьях дерева. Однако, каждому пути к отдельному листу (правилу классификации) соответствует множество объектов, в котором элементы (объекты) не могут повторяться в разных листьях.

Построение ДР проводится с использованием пакета See5, позволяющим конструировать классификатор объектов в виде ДР, которому может быть поставлено в соответствие некоторое множество логических правил.

Перед вычислением дерева необходимо скопировать данные в блокнот wordpad, после чего изменить формат файла на data . Исходные данные для вычисления дерева решения примут следующий вид (имя файла derevo):


1,1826363,189,15

2,917535,188,14

1,1482830,166,15

1,2474846,164,15

1,642738,167,15

2,1106109,190,14

1,462245,147,15

1,1105639,197,16

1,788815,189,15

3,7853229,156,14

1,451150,160,15

1,1420937,189,15

1,1266100,203,15

1,438172,192,15

2,1682123,184,14

1,1263580,184,15

1,1644670,172,15

3,14438366,112,14

2,1229661,175,13

1,4356096,183,15

1,1851976,177,15

1,230977,185,16

3,2383630,170,14

2,1374942,160,14

2,1359242,192,14

1,758176,179,15

1,944696,182,15

1,438416,197,15

3,8669422,172,14

1,211300,198,15

1,122290,89,18

1,32493,134,15

1,577318,204,15

1,136223,186,16

1,209524,217,16

1,787277,209,16

2,36251,171,14

3,4884241,190,14

2,3403749,195,15

1,1013384,188,15

2,2853828,202,15

3,4082560,171,15

3,10950662,172,14

1,921844,154,15

2,940159,189,14

3,7889566,165,14

3,5052323,167,14

2,3311362,199,14

3,6933937,180,14

2,2734210,192,14

3,6301381,187,15

2,3518255,191,13

2,1015552,188,14

3,8174605,176,14

2,2663564,190,14

1,1412219,178,15

После этого создаем файл под именем derevo формат names .

Файл derevo . names выглядит следующим образом:

Class. |targetattribute

Class: 1,2,3.

объем выданных кредитов физическим лицам: continuous.

средневзвешенный срок кредитования: continuous.

средневзвешенная процентная ставка: continuous.

Шаг 1.

Построение дерева решений.

Decisiontree:

средневзвешенная процентная ставка <= 14:

:...объем выданных кредитов физ.лицам <= 4082560: 2 (14/1)

: объем выданных кредитов физ.лицам > 4082560: 3 (9)

средневзвешенная процентная ставка > 14:

:...объем выданных кредитов физ.лицам <= 2663564: 1 (28)

объем выданных кредитов физ.лицам > 2663564:

:...объем выданных кредитов физ.лицам <= 3518255: 2 (2)

объем выданных кредитов физ.лицам > 3518255: 3 (3/1)


В полученном дереве 5 ветвей. Первая ветвь: 2 класс, состоящий из 14-ти объектов, причем 1 классифицируется ошибочно.

Вторая ветвь: 3 класс, состоящий из 9-ти объектов. Третья ветвь: 1 класс – 28 объектов. Четвертая ветвь: 2 класс – 2 объекта. Пятая ветвь: 3 класс – 3 объекта, причем 1 объект классифицируется ошибочно.

Данное дерево решений содержит в себе следующую информацию:

Если средневзвешенная процентная ставка <= 14 и объем выданных кредитов физ. лицам<= 4082560, то класс 2 (14/1 объектов),

Если средневзвешенная процентная ставка <= 14 и объем выданных кредитов физ. лицам >4082560, то класс 3 (9 объектов),

Если средневзвешенная процентная ставка > 14 и объем выданных кредитов физ. лицам <= 2663564, то класс 1 (28 объектов),

Если средневзвешенная процентная ставка > 14 и объем выданных кредитов физ. лицам на покупку жилья >2663564 и <=3518255 то класс 2 (2 объекта).

Если средневзвешенная процентная ставка > 14 и объем выданных кредитов физ. лицам на покупку жилья >2663564 и >3518255 то класс 3 (3/1 объекта).

Ниже представлены извлеченные правила.

Extracted rules:

Rule 1: (28, lift 1.9)

объем выданных кредитов физ.лицам <= 2663564

средневзвешанная процентная ставка > 14

-> class 1 [0.967]

Rule 2: (14/1, lift 3.3)

объем выданных кредитов физ.лицам <= 4082560

средневзвешанная процентная ставка <= 14

-> class 2 [0.875]

Rule 3: (5/3, lift 1.6)

объем выданных кредитов физ.лицам > 2663564

средневзвешанная процентная ставка > 14

-> class 2 [0.429]

Rule 4: (12/1, lift 4.0)

объем выданных кредитов физ.лицам > 3518255

-> class 3 [0.857]


Каждое правило имеет следующую структуру:

- номер правила,

- в скобках – количество объектов обучающей выборки,

- запись условной части правила (часть «ЕСЛИ»),

- после знака импликации (->) – запись заключительной части правила (часть «ТО»), в которой указана принадлежность к классу,

- величина, принимающая значение от 0 до 1, которая выражает степень доверия к правилу.


К-во Просмотров: 330
Бесплатно скачать Курсовая работа: Анализ деятельности кредитных организаций