Курсовая работа: Анализ и синтез электрических фильтров

,

- период,

, - функции, составляющие ортогональный базис.

Разложение справедливо для периодических функций (), заданных на всей числовой оси до .

Данную функцию нельзя разложить в тригонометрический ряд Фурье, так как она не периодическая. Доопределим данную функцию на всю числовую ось (рис. 2.1). В данном случае функция не является ни чётной, ни нечётной. Для такого сигнала справедливо общее разложение, содержащее постоянную составляющую, косинусы и синусы.

Кроме периодичности полученная функция удовлетворяет всем условиям теоремы Дирихле:

1. она непрерывна на отрезке и имеет конечное число точек разрыва первого рода;

2. она имеет конечное число экстремумов на этом отрезке.

Следовательно, к полученной функции можно применить разложение в тригонометрический ряд Фурье.

Рис. 2.1

Запишем аналитическое выражение для данной функции:

Вычислим с помощью пакетаMATLAB 6.5(7.0) и m - file : Fourier . m коэффициенты Фурье для двадцати гармоник.


Таблица 2 . 1

Результатов вычислений:

Коэффициенты Фурье для данной функции

F(x), заданной графически на отрезке [0,T].

Коэффициенты Коэффициенты

A(0)= 75.000

A(1)= -20.264

A(2)= -10.132

A(3)= -2.252

A(4)= -0.000

A(5)= -0.811

A(6)= -1.126

A(7)= -0.414

A(8)= -0.000

A(9)= -0.250

A(10)= -0.405

К-во Просмотров: 634
Бесплатно скачать Курсовая работа: Анализ и синтез электрических фильтров