Курсовая работа: Анализ методики проведения санитарно-экологического состояния объекта
L = 10lg(p 2/ po2 ) = 20lg(p /po ),(1)
где р — звуковое давление, Па;
po — пороговое звуковое давление, равное 2*10-5 Па.
Каждому удвоению звукового давления соответствует изменение уровня звукового давления на 6 дБ. Логарифмические единицы уровней звукового давления являются не абсолютными, а относительными и потому безразмерными единицами. Однако после того как пороговое значение р0 было стандартизовано, определяемые относительно него уровни звукового давления приобрели смысл абсолютных значений, так как они однозначно характеризуют соответствующее значение звукового давления. В (табл.№3, приложение А) приведены средние значения, уровней звукового давления ряда источников шума.
Уровень звуковой мощности LP , дБ, определяется по формуле
LP = 101g(P / P 0 ),(2)
где Р — звуковая мощность, Вт;
Ро — пороговая звуковая мощность, равная 2*10-12 Вт.
В практических расчетах все вычисления проводятся до целых чисел децибел, так как изменение уровня звукового давления менее 1 дБ органом слуха не воспринимается.
Весь слышимый диапазон на стандартной частоте 1000 Гц укладывается в интервале уровней от 0 до 120 дБ. При больших значениях уровней человек вместо звука испытывает боль в ушах.
Абсолютные значения звукового давления, а, следовательно, и его уровня на частотах, отличных от 1000 Гц имеют другие численные значения, что особенно заметно на пороге слышимости (рисунок № 2, приложение Б).
Значения уровней звукового давления, выраженные в децибелах, не позволяют судить о физиологическом ощущении громкости. Вследствие этого для физиологической оценки шума приняты кривые равной громкости (см. рисунок №2, приложение Б), полученные по результатам изучения свойств органа слуха оценивать звуки различной частоты по субъективному ощущению громкости, определяя, какой из них сильнее или слабее (громче или тише). За единицу уровня громкости, называемую фоном, принимается разность уровней звукового давления в один децибел эталонного звука частотой 1000 Гц. Следовательно, уровень громкости является функцией звукового давления и частоты. Каждая кривая представляет собой геометрическое место точек, координаты которых – уровень звукового давления и частота – обеспечивают одинаковую громкость звуков.
Для стандартной частоты 1000 Гц уровни звукового давления (силы звука) и громкости численно равны, в то время как для других частот равенства не наблюдается. В соответствии с кривыми звук частотой 100 Гц и уровнем 52 дБ воспринимается в сравнении со звуком частотой 1000 Гц и уровнем 21 дБ как равно громкий. Уровень громкости при этом составляет 21 фон. Пользуясь кривыми равной громкости, можно определить уровень громкости звука на любой частоте, если известно его значение уровня звукового давления в децибелах.
Звуковая энергия, излучаемая источником шума, распределена по частотам. Поэтому необходимо знать частотный спектр, т. е. значения уровней звукового давления или уровней звуковой мощности на отдельных частотах. Спектр случайных или непериодических процессов, которые характерны для значительного большинства источников шума в городах, является сплошным, поэтому он обычно представляется в полосах частот определенной ширины (Δf ). Эти полосы ограничиваются нижней f 1 и верхней f 2 граничными частотами. За среднюю частоту полосы обычно принимают среднегеометрическую частоту f :
При проведении акустических расчетов и измерениях шумов чаще всего используют октавные полосы частот. Октавной полосой частот называется полоса частот, у которой отношение граничных частот f 2/ f 1= 2.
Если , f 2/ f 1 = = 1,26, то ширина полосы равна 1/3 октавы. Акустические расчеты, измерения и нормирование шума в городах производятся в звуковом диапазоне частот от 45 до 11200 Гц. Этому диапазону соответствуют октавные полосы частот с граничными среднегеометрическими частотами, указанными в (рисунок № 2, приложение А).
Уровни звукового давления или звуковой мощности, отнесенные к октавным полосам частот, называют октавными уровнями, а уровни, отнесенные ко всем полосам частот — общими уровнями.
Для оценки шума одним числом, учитывающим субъективную оценку его человеком, в настоящее время широко используется «уровень звука» (в дБА) — общий уровень звукового давления, измеряемый шумомером на кривой частотной коррекцииА, характеризующей приближенно частотную характеристику восприятия шума человеческим ухом. (Эта кривая коррекции А соответствует кривой равной громкости с уровнем звукового давления 40 дБ на частоте 1000 Гц). Относительная частотная характеристика кривой коррекции А приведена в (таблице № 5, приложение А).
В практике борьбы с шумом часто бывает необходимо сложить уровни звукового давления (уровни звука) двух или более источников шума, найти средний уровень или по октавным уровням рассчитать общий уровень звукового давления. Сложение уровней производится с помощью (таблицы № 6, приложение А).
Последовательное сложение уровней звукового давления (уровней звука) начинают с максимального уровня. Сначала определяют разность двух складываемых уровней, а затем из установленной разности по табл. 6 находят добавку, которую прибавляют к большему из складываемых уровней. Аналогичное действие проводят с указанной суммой двух уровней и третьим уровнем и т. д.
Шум большинства городских источников включает звуки почти всех полос частот слухового диапазона, но отличается разным распределением уровней звукового давления по частотам и неодинаковым изменением их по времени. Классификация шумов, действующих на человека, производится по их спектральным и временным характеристикам.
По виду спектра шумы могут быть разбиты на низкочастотные с максимумом звукового давления в области частот ниже 300 Гц, среднечастотные с максимумом звукового давления в области частот 300—800 Гц и высокочастотные с максимумом звукового давления в области частот выше 1000 Гц. По временным характеристикам шумы подразделяются на постоянные, уровень звука которых изменяется во времени не более чем на 5 дБА, и непостоянные, уровень звука которых изменяется во времени более чем на 5 дБА.
К постоянным шумам относятся шумыпостоянно работающих насосных, вентиляционных и компрессорных установок, а также инженерного и технологического оборудования промышленных предприятий (воздуходувок, испытательных стендов и др.).
Непостоянные шумы можно подразделить на колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени; прерывистые, уровень звука которых резко падает до уровня фонового шума несколько раз за время наблюдения, причем длительность интервалов, в течение которых уровень звука остается постоянным и превышающим уровень фонового шума, составляет 1 с и более, и импульсные, состоящие из одного или нескольких следующих друг за другом звуковых импульсов длительностью менее 1 с. К непостоянному колеблющемуся шуму относится шум автомобильного транспорта, к прерывистым шумам — шум железнодорожного транспорта, холодильных установок, а также некоторых непостоянно работающих установок промышленных предприятий. К импульсным шумам можно отнести шум пневматических молотков, кузнечнопрессового оборудования, сваебойных машин.
Методы оценки шума зависят в первую очередь от его временного характера. Постоянный шум оценивается в уровнях звукового давления L в дБ в октавных полосах частот со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц. Этот метод оценки постоянного шума является основным. Для оценки непостоянных шумов, а также для ориентировочной оценки постоянных шумов используют уровень звука в дБА. Необходимо отметить, что для оценки шумов в городах преимущественно применяют уровни звука.[1] [1]
1.2 Медико-биологический аспект
Физиологическое действие вибрации и шума на организм
На протяжении миллионов лет развития человеческого общества никогда, ни при одной цивилизации не возникало проблемы биологически опасного действия для человека звука и вибрации. Лишь грозные явления природы: громы, молнии, землетрясения, цунами и другие виды стихий, наводили на людей ужас своей мощью и таинственностью. И вот, спустя миллионы лет эволюции, впервые в XXвеке возникла вполне реальная угрозабиологическому благополучию человека от действия различных форм механической энергии (звук, вибрация и давление). Эту угрозу принесла современная цивилизация, ее научно-техническая революция. Социальный фактор нарушил веками складывавшиеся, жизненно необходимые взаимоотношения биологических процессов с действием механических факторов. Возникла биосоциальная, проблема, которую в общем виде можно сформулировать как проблему нарушения взаимоотношений биологических и социальных факторов в жизни человека. Социальный фактор все в большей степени стал определять конечный результат взаимодействия человека с окружающей средой. Именно социальный фактор породил условия, при которых звук и вибрация становятся источником патологии, угрожая не только здоровью людей, но, что более опасно, биологической судьбе последующих поколений.