Курсовая работа: Анализ сложных электрических цепей постоянного тока и однофазного переменного тока
=I11-I33=-0.52455258749889799877-(-1.2913691263334214934) =0,77 A
=-I22=1.32 A
=I22-I11=-1.3224896411883981310-(-0.52455258749889799877) -0,8 A
=I11=-0.52 A
=I33-I22=-1.2913691263334214934-(-1.3224896411883981310) =0,03 A
В результате токи равны:
=1.29 A
=0,77 A
=1.32 A
= -0,8 A
= -0.52 A
= 0,03 A
1.3 Расчёт токов методом узлового напряжения
Проверяем правильность нахождения токов в заданной электрической цепи методом узловых потенциалов. Согласно этому методу предполагается, что в каждом узле схемы имеется свой узловой ток который равен алгебраической сумме всех токов за счет проводимости ветвей. Этот метод основан на первом законе Кирхгофа и законе Ома.
Заземляем узел 3, φ 3=0
Если в электрической схеме заземляется один из узлов, потенциал этой точки равен 0, а тока распределение не меняется.
Находим собственные проводимости ветвей присоединенных к оставшимся узлам 1,2,4. Собственная проводимость ветвей равна арифметической сумме проводимостей ветвей присоединенных к соответствующим узлам.
Находим взаимные проводимости, которые равны проводимости общих ветвей между соседними узлами.
Находим полный узловой ток, который равен сумме произведений ЭДС на соответствующую проводимость.
Составляем уравнение в соответствии с первым законом Кирхгофа.
(Данные расчета находятся в приложении 3)