Курсовая работа: Анализ видов понятий и предложения по их использованию в практике логического обобщения выводов
6. Время (quando).
7. Положение (situs);
8. Обладание (habitus);
9. Действие (actio).
10. Страдание (passio).
Под эти десять категорий, по мнению Аристотеля, подходит всё то, что можно мыслить. Если мы желаем высказать о тех или других вещах что-либо самое общее, то мы не можем о них высказать ничего другого? кроме того, что они суть или субстанции, или что они обозначают качество, отношение, место и т. п. Других точек зрения, кроме тех, которые содержатся в категориях, не существует. Таким образом, можно сказать, что категории представляют собой наиболее общие классы всего мыслимого.
Итак, рассмотрим какие виды понятий существуют в современной логике. На основе изучения и анализа литературы[7] можно составить следующую сводную классификацию.
Общие, единичные, пустые понятия . Объемы понятий могут быть разными. Прежде всего, нельзя путать понятия общие и единичные; их различие в логических свойствах не допускает одинакового обращения с ними при выполнении операций. В целом ряде случаев для них действуют разные правила. Общие понятия охватывают много предметов. Причем "много", как и множественное число в грамматике, начинается с двух. Иными словами, даже если в объеме только два явления или две вещи, то этого достаточно, чтобы охватывающее их понятие считать общим.
«Так, "полюс Земли" представляет собой общее понятие, хотя полюсов всего два - северный и южный. Тем более общими являются понятия "книга", "ракета", "морское млекопитающее" - в объеме каждого из них далеко не один предмет. Самая примечательная черта этих понятий состоит в следующем: то, что сказывается об общем, то одновременно может сказываться о каждом элементе из объема. Прежде всего, для науки важны общие понятия; все научные основоположения формулируются с их помощью. Единичные понятия, в отличие от общих, охватывают только один предмет. Таковы "Атлантический океан", "атомный ледокол "Ленин", "Эйфелева башня", "Царь-пушка". В логике рассматриваются также пустые понятия. Они имеют нулевой объем: "вечный двигатель", "Баба-Яга", "четыре, умноженное на сонату Бетховена", "повышение продуктивности сельского хозяйства в России в результате фермеризации»[8]
Соотносительные и несоотносительные понятия. Существует целая группа примечательных в теоретическом отношении явлений и предметов, а также обозначающих их понятий, которые мыслятся только парами; на их логическое своеобразие в свое время указал немецкий философ Гегель. Причина - следствие, учитель - ученик, раб - господин, восход - закат. Одно не бывает без другого. Учитель, у которого нет и не было учеников, никак не может считаться учителем; равным образом и учеников без учителя не бывает. Так же нерасторжимо связаны и другие пары. Конечно, можно отвлечься от того, что у причины есть следствия, но тогда она не причина, а просто событие. И отец может, разумеется, существовать и вне соотношения с сыном, но тогда он не отец, а мужчина вообще. Большинство понятий являются несоотносительными; для раскрытия их содержания не требуется привлекать какие-то сопряженные с ними, в некотором смысле противоположные им понятия.
Абстрактные и конкретные понятия. Всякое понятие, строго говоря, обязательно является абстрактным в том смысле, что оно оставляет в себе только наиболее важные с какой-либо точки зрения признаки и отбрасывает все остальные (абстрагируется от них). Однако собственно абстрактными принято называть такие понятия, в содержание которых входит какое-нибудь свойство или действие, - белизна, возбудимость, демократичность, светимость. Выпадают из рассмотрения в этом случае сами вещи, являющиеся возможными носителями данных свойств (абстрагируются, следовательно, от самих предметов). Такие понятия противопоставляются конкретным, которые, наоборот, отображают предметы и явления сами по себе.
Регистрирующие и нерегистрирующие понятия. Разделение понятий на эти два вида вызвано развитием математической логики и компьютеризацией. Здесь речь идет о возможности хотя бы в принципе пересчитать предметы, входящие в объем соответствующего понятия. В зависимости от этого меняются свойства программ и алгоритмов, с помощью которых эти объемы обрабатываются. Если охваченные понятием предметы можно пересчитать или хотя бы указать способ их пересчета, то понятие является регистрирующим. Если же пересчет невозможен, то тогда оно нерегистрирующее.
Собирательные и разделительные понятия. Собирательные понятия в отличие от разделительных характеризуют совокупности предметов и вещей со стороны преобладающих в них свойств[9] . Такие свойства, являясь типичными для всего множества, не являются, однако обязательными для каждого предмета в отдельности. Собирательные понятия потому и надо отличать от обычных разделительных, что с собирательными понятиями невозможно совершать логические операции, так как общие высказывания о них не позволяют делать выводы о каждом из отдельных предметов, входящих в их объем. В обыденной речи и в художественной литературе могут не обращать внимание на отмеченную разницу в смысле понятий. Для логики же она существенно важна. Только у разделительных понятий то, что говорится об общем, относится к каждому в отдельности. Приложение же логических законов к разделительным понятиям и осуществление логических преобразований над ними имеют значительные ограничения.
В общем и целом надо помнить, что отнесение понятий к тому или иному виду должно начинаться с определения его содержания. Пока оно не задано, говорить и тем более спорить о его характеристиках бессмысленно.
Субординация этих видов понятий может быть представлена на следующей схеме (см. рис. 2).
2.2. Типы отношений между понятиями
Логические операции, позволяющие делать определенные выводы и доказывать какие-то утверждения, основываются, как уже отмечалось ранее, на связях и отношениях разных понятий. Такие связи очень многообразны и на их изучение, в конечном счете, и направлена вся наука, вся познавательная деятельность человека вообще. Часть из них изучается только логикой и никогда не делается предметом специального внимания других наук. Сейчас речь пойдет именно о таких связях и отношениях; они могут быть обусловлены как содержанием понятий, так и их объемом.
Классификация понятий с точки зрения взаимоотношений между ними начинается с разделения их на сравнимые, которым свойственны чисто логические связи и отношения, и несравнимые, у которых таких связей нет вообще, их отличительная черта состоит в том, что ни в их содержании, ни в их объеме нет общих элементов[10] . Поэтому, зная что-то об одном из них, нельзя делать выводы о другом - отсутствие логических связей не позволяет проложить переход между ними. Чисто логические связи и отношения обязательно имеются у сравнимых понятий, потому что у них есть общие элементы в объеме и (или) содержании. И делать умозаключения относительно их можно, опираясь на одни лишь формальные особенности, взятые из их определений.
Сравнимые понятия подразделяются на два вида - совместимые и несовместимые, а каждый из этих в свою очередь распадается еще на три разновидности. К совместимым относятся: равнозначные (тождественные), перекрещивающиеся (пересекающиеся) и подчиненные (субординированные) понятия.
Отношение равнозначности (тождества). Равнозначные понятия имеют одинаковый объем, но разное содержание; ими охватываются одни и те же предметы, но задаются эти предметы через разные признаки. Так, если мы сначала будем говорить о равносторонних треугольниках, а потом обратимся к равноугольным треугольникам, то ясно, что предмет обсуждения не изменится, просто мы будем его иначе называть.
Отношение перекрещивания (пересечения). Перекрещивающиеся понятия имеют разное содержание, но объемы их частично совпадают и в то же время частично не совпадают.
Отношение подчинения (субординации). Понятия, находящиеся в отношении подчинения, имеют одинаковые элементы в содержании, а объем одного (подчиненного) полностью входит в объем другого (подчиняющего).
Отношение соподчинения (координации). Соподчиненные понятия имеют в содержании общие элементы, благодаря которым все вместе входят в родовое понятие, но общих элементов в их объемах нет.
Отношение противоречия (контрадикторности). В разделе о законах логики уже говорилось об отношении противоречия и противоположности между высказываниями. Такие отношения возможны и между понятиями. Противоречащими называются понятия, когда у одного из них имеется тот или иной признак, а у другого он отрицается (признак вообще-то отмечается в содержании того и другого, но по-разному).
Отношение противоположности (контрарности). Противоположные понятия являются видами одного и того же рода, но одно из них обладает каким-то признаком, а другое не только не обладает им, но и имеет сверх того еще и признак, несовместимый с данным, направленный против него.
3. Практика логического обобщения выводов
Логика изучает мышление. Есть и другие науки, которые имеют его своим предметом исследования, например психология и физиология. Однако в логической науке мышлением интересуются лишь постольку, поскольку оно занимается рассуждением, доказательством, обоснованием своих утверждений и выводов. Она, таким образом, является наукой о законах мышления, занятого поиском истины. Ее называют также наукой о выводном знании, наукой о доказательствах. Логика исследует сцепление мыслей между собой, их необходимые связи: обязательность, непреложность следования выводов из каких-либо суждений или, наоборот, несовместимость тех или иных высказываний.
Важную роль в логике играет понятие формы мышления. Логику можно даже называть наукой о формах мысли.
Понятия выполняют две основные функции[11] :
1) Познавательная функция. Она осуществляется на основе такой логической операции, как применение понятии.
2)Коммуникабельная. Она тесно связана с предыдущей т.е. функция средства общения.