Курсовая работа: Аппаратурно-технологическая схема получения глинозема на участке кальцинации по способу Байера

ВВЕДЕНИЕ

Производство алюминия развивается исключительно быстрыми темпами, что объясняется, прежде всего, его ценными свойствами (малая плотность, высокая электропроводность, пластичность и устойчивость к коррозии), разнообразием областей применения и большой распространенностью алюминиевых руд в природе. Известно, что глинозем является промежуточным продуктом в производстве алюминия, поэтому вместе с увеличением выпуска алюминия происходит рост производства глинозема. На Павлодарском алюминиевом заводе производство глинозема осуществляется по последовательной, комбинированной схеме Байер-спекание. Данный способ обусловлен химическим составом бокситов (высокое содержание кремния и железа), поступающих на переработку.

Рассмотренный в этом курсовом проекте процесс обескремнивания алюминатного раствора, является частью способа Байер-спекание, который разработан и осуществлен на Павлодарском алюминиевом заводе. Почему этот способ? Да потому, что именно по такой схеме, возможно, перерабатывать бокситы с высоким содержанием железа и кремния, с наиболее полным извлечением глинозема. Сырье, поступающее на этот завод, именно такое и каким-либо другим способом его невозможно переработать. Участок кальцинации – это подразделение ГМЦ, в котором происходит завершающая стадия производства основного вида продукции завода – металлургического глинозема. Процесс кальцинации гидроокиси алюминия Al(OH)3 является заключительным при любой схеме производства глинозема и определяющим некоторые из его основных свойств и характеристик. Участок кальцинации также занимается складированием и отгрузкой глинозема потребителям. Входом на участок является поступление продукционного гидрата с участка №3 ГМЦ, выходом с участка является товарный глинозём, который направляется потребителю.


1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

1.1 Аппаратурно-технологическая схема участка кальцинации

печь кальцинация алюминий газоочистка

Технологическое оборудование участка представлено системой конвейеров подачи гидрата (узел загрузки), пятью технологически автономными печными нитками и складом товарного глинозема. Каждая печная нитка представляет собой комплекс оборудования, предназначенного для прокалки, охлаждения и транспортировки глинозема, а также газоочистного оборудования. По аппаратурному составу и технологии прокалки печные нитки принципиально не отличаются.

Гидрат, поданный на участок по системе конвейеров, попадает в бункер гидрата печной нитки. Далее ленточным дозатором СБ-111, управляемым прокальщиком с огневой, гидрат подается в шнековый питатель, который, в свою очередь, загружает его в газоход навстречу отходящим печным газам. Таким образом, термообработка гидрата начинается еще до того, как он попадает в печь – значительная часть физической влаги удаляется из него в газоходах и в системе газоочистки в результате нагрева отходящими из печи газами. Унесенные газами при загрузке частицы гидрата, а также частицы материала, вынесенные из печи, улавливаются в системе газоочистки и возвращаются в печь. Система газоочистки состоит из двух ступеней – механическая (две стадии батарейных циклонов) и электрическая (вертикальные электрофильтры).

Попав в печь через газоход или по пылепроводам из системы газоочистки, материал движется в сторону разгрузочной (горячей) головки печи за счет вращения трубчатой печи и ее уклона 2% в сторону разгрузки. Выходящий из печи глинозем имеет температуру ≈800÷900о С и, для дальнейшей транспортировки, охлаждается в холодильниках до температуры не выше 200о С.

Глинозем из печей охлаждается во вращающихся трубчатых холодильниках. Движение глинозема в них осуществляется по тому же принципу, что и в печах – за счет вращения корпуса холодильника и его уклона 2% в сторону разгрузки. Охлаждение происходит за счет орошения корпуса холодильника оборотной водой и за счет прососа через него атмосферного воздуха. Глинозем из печи охлаждается в холодильнике кипящего слоя (ХКС). В нем охлаждение и движение материала осуществляется атмосферным воздухом - воздух нагнетается в ХКС через слой глинозема, приводя его в псевдосжиженное (или "кипящее") состояние. Просос воздуха и его нагнетание осуществляется дутьевыми вентиляторами. Нагретый глиноземом воздух подается ими в печи на сжигание мазута. Вентилятор – марки ВМ-17.

Охлажденный в холодильниках глинозем откачивается камерными насосами (с помощью сжатого воздуха) по трубопроводам на склад глинозема. Десять трубопроводов (по числу камерных насосов – на каждую печь по два) уложены на эстакаде пневмотранспорта.

Склад глинозема представляет собой десять силосных башен, под которые подаются железнодорожные вагоны типа "хоппер – цементовоз". Погрузка глинозема в вагоны осуществляется вручную через разгрузочные рукава в днищах силосов.

1.2 Описание и режимные параметры технологического процесса по операциям

Процесс кальцинации (обезвоживания) гидрата выражается химической формулой


Для протекания этой реакции (разрыва химических связей между молекулами воды и оксида алюминия) необходимо затратить определенную, достаточно большую энергию. Практически это выражается в нагреве гидрата до высокой температуры и выдержке его при данной температуре определенное время.

В промышленных масштабах, прокалка глинозема осуществляется в металлургических печах, источником энергии в которых является жидкое или газообразное топливо. Материал в процессе прокалки контактирует с раскаленными газами и поверхностями печи, нагреваясь от них. Таким образом, сжигание топлива происходит в одном пространстве с материалом, вследствие чего, к топливу также предъявляются определенные требования. Оно (топливо) не должно загрязнять глинозем, должно позволять организацию стабильного и устойчивого горения, иметь высокую калорийность. Топливом для печей участка кальцинации в основном является малосернистый мазут марки М100 (реже М40).

Прокалка глинозема осуществляется во вращающихся трубчатых печах, футерованных огнеупорным шамотным кирпичом. Процесс превращения гидрата в глинозем состоит из четырех основных этапов, которые характеризуются определенными изменениями химического состава и физического состояния материала. Печное пространство, в свою очередь, делится на четыре зоны, каждая из которых соответствует определенному этапу превращения материала. Четких границ между зонами по ряду причин (сложное движение материала, относительная нестабильность теплового режима, параметров и состава топлива и гидрата) не существует, но это деление позволяет легче понять процесс кальцинации. На рисунке А.1 показано нахождение материала в печи.

Первая зона - зона сушки. Здесь удаляется внешняя (физическая) влага гидрата, а материал нагревается до температуры порядка 200÷250О С. Отходящие газы имеют температуру порядка 200÷250О С, а температура газов поступающих в зону до 600О С.

Вторая зона - зона кальцинации. В этой зоне из материала удаляется вся кристаллизационная (химическая) влага, а материал нагревается до температуры 900÷950 О С, при этом образуется глинозём гамма-модификации (g-Al2 O3 ) – обезвоженная, но гигроскопичная модификация глинозема. Температура отходящих газов порядка 600÷700 О С.

Третья зона - зона прокалки. В этой зоне происходит образование, так называемой, высокотемпературной формы гамма-модификации глинозема, более устойчивой и менее гигроскопичной. Также в зоне прокалки (особенно в конце этой зоны – в районе горения мазутного факела) начинается активное образование альфа-модификации глинозема (a-Al2 O3 ) – наиболее устойчивой и негигроскопичной. Доля глинозема, перешедшего в зоне прокалки в альфа-модификацию, зависит от времени нахождения его в этой зоне и от интенсивности теплового воздействия на материал раскаленных продуктов сгорания топлива. Температура глинозема на выходе из зоны прокалки около 1200 О С, температура отходящих газов порядка 1300÷1400 О С.

Четвертая зона – зона охлаждения. В этой зоне глинозем, находясь уже за топливным факелом, охлаждается до температуры ≈620÷900О С.

Материал интенсивно выносится из печи отходящими газами. Пылеунос составляет обычно от 100 до 200% от производительности печи, поэтому газы проходят через систему газоочистки: батарейные циклоны и вертикальные электрофильтры, центробежный пылеуловитель, циклоны и горизонтальный электрофильтр. Уловленная пыль возвращается в печь. Прокаленный глинозем охлаждается в холодильниках воздухом и водой до температуры, пригодной для его дальнейшей транспортировки, складирования и отгрузки потребителям. Нагретый в холодильнике воздух подается в печь на горение топлива. Использование предварительно нагретого воздуха для сжигания мазута, а также тепла отходящих из печи газов для сушки гидрата, позволяет сократить удельный расход топлива и повысить производительность печи.

Требования, предъявляемые к металлургическому глинозему, включают в себя требования к химическому составу (нормируется содержание примесей, остаточная химическая влага, доля a-Al2 O3 ) и к физическим свойствам (остаточная физическая влага, дисперсный состав, угол естественного откоса, удельная поверхность).

Величину остаточной химической влаги характеризует такой параметр, как п.п.п. (потери при прокаливании). Название этого параметра происходит от способа его определения – проба глинозема прокаливается в стандартных условиях с определением массы пробы до и после прокалки. Разность масс пробы (она появляется в результате удаления химической влаги), выраженная в процентах к первоначальному весу пробы, и есть п.п.п, что представлено формулой (1):

п.п.п.= ((М1 – М2 )/ М1 )* 100% (1)

где М1 и М2 – масса пробы до и после прокалки соответственно

В соответствии с рисунком Б.1 принципиальная схема состоит из:

1 - установка утилизации тепла;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 372
Бесплатно скачать Курсовая работа: Аппаратурно-технологическая схема получения глинозема на участке кальцинации по способу Байера