Курсовая работа: Аппроксимация экспериментальных зависимостей
В результате тестирования программы выявлены следующие её особенности:
1. Допустимые значения исходных данных лежат в пределах [-10000000; +10000000 ];
2. При больших значениях аргумента вычерчивание графика замедляется;
3. При значениях исходных данных в пределах 10-9 - график функции может быть не виден вследствие слишком мелкого масштаба.
Результаты выполнения задания
1. После ввода выходных данных, перед проведением вычислений для выбора вида аппроксимирующей функции представим экспериментальные данные в графическом виде (СНИМОК I ).
2. При вычислении аппроксимирующей функции 2 –й степени программа вывела на экран (СНИМОК II ) :
- вид аппроксимирующего полинома: P = 25440,380859 ─ 1670,317871* T + 27,71546* T 2 ;
- dP иdP (%) – ошибки аппроксимации .Сравнительный анализ погрешностей показывает, что полученная аналитическая зависимость удовлетворительно обобщает исходные экспериментальные данные. Максимальная ошибка аппроксимации σPmax = 10,539856(2,9253%), минимальная - σPmin = 4,473511 (0,365573%);
- ITG - интегральную оценку аппроксимации. Для интегральной оценки аппроксимации использована формула:
ITG ==8,179605;
После завершения вычислений построим график аппроксимирующей функции и сравним его с графиком, построенным по выходным данным таблицы 01. Сравнивая графики можно определить хорошую сходимость теоретических и экспериментальных
3. При вычислении аппроксимирующей функции 1 – й степени программа вывела на экран
- вид аппроксимирующего полинома:
P = ─ 9342,520508 + 297,479797* T ;
- dCP иdCP (%) –абсолютную и относительную ошибки аппроксимации. Сравнительный анализ погрешностей показывает, что полученная аналитическая зависимость неудовлетворительно обобщает исходные экспериментальные данные.
Максимальная абсолютная ошибка аппроксимации
dCP - σPmax = 204,608398(8,3045868%),
минимальная абсолютная ошибка аппроксимации
dCP - σPmin = 20,088257(1,013637%).
Максимальная относительная ошибка аппроксимации
dCp (%) - σPmax = 50,920618% (183,46698),
минимальная относительная ошибка аппроксимации
dCp (%) - σPmin = 1,013637%(20,088257).
- ITGL - интегральную оценку аппроксимации.
ITGL = 120,015892;
После завершения вычислений построим график аппроксимирующей функции и сравним его с графиком, построенным по выходным данным таблицы 01. Сравнивая графики, а также значения
dCP ,dCP (%) и ITGL можно определить неудовлетворительную сходимость теоретических и экспериментальных данных.
4. После запуска программы на экране появляется приглашение < Enter input dates > , предлагающее пользователю ввести количество пар входных данных, после чего выводится строка ввода значений аргумента < ENTER EXPERIMENTAL ARGUMENT VALUE > и затем значений экспериментальной зависимости <ENTER EXPERIMENTAL DEPENDENCY VALUE> .