Курсовая работа: Архитектура многокристального микропроцессора К10 и К10.5

Введение

Построение ЭВМ на основе микропроцессорных БИС позволяет уменьшить стоимость микроЭВМ, сравнимых по своим параметрам с ранее созданными ЭВМ, в 103 - 104 раз, габаритным размерам - в (2-3)x104 раз, по мощности потребления - в 105 раз. Это означает, что без увеличения общих затрат микроэлектронная технология позволяет обществу произвести в сотни и тысячи раз больше ЭВМ, чем ранее.

Микропроцессор – функционально законченное устройство обработки информации, управляемое хранимой в памяти программой. Появление микропроцессоров (МП) стало возможным благодаря развитию интегральной электроники. Это позволило перейти от схем малой и средней степени интеграции к большим и сверхбольшим интегральным микросхемам (БИС и СБИС).

По логическим функциям и структуре МП напоминает упрощенный вариант процессора обычных ЭВМ. Конструктивно он представляет собой одну или несколько БИС или СБИС.

По конструктивному признаку МП можно разделить на однокристальные МП с фиксированной длиной (разрядностью) слова и определенной системой команд; многокристальные (секционные) МП с наращиваемой разрядностью слова и микропрограммным управлением (они состоят из двух БИС и более).

В последнее время появились однокристальные МП с микропрограммным управлением.

Архитектура многокристального МП с микропрограммным управлением позволяет достичь гибкости в его применении и сравнительно простыми средствами организовать параллельное выполнение отдельных машинных операций, что повышает производительность ЭВМ на таких МП.

В данной курсовой работе будут рассмотрены два поколения микропроцессорной архитектуры – К10 и К10.5

История создания

K 10 — поколение архитектуры микропроцессоров x86 компании AMD. Процессоры этой архитектуры появились в продаже в конце 2007 года.

Первое упоминание о микроархитектуре следующего поколения появилось в 2003 году, на форуме Microprocessor Forum 2003. На форуме отмечалось, что в новую микроархитектуру будет положено многоядерность процессоров, которые будут работать на тактовых частотах до 10 ГГц. Позднее тактовые частоты были в несколько раз занижены. Первые официальные упоминания AMD о разработке четырёхъядерных процессорах появились в мае 2006-го в роадмапе, опубликованном на срок до 2009 года. Правда, тогда новая микроархитектура значилась под кодовым наименованием AMD K8L, и только в феврале 2007 года было утверждено окончательное наименование AMD K10. Процессоры, основанные на улучшенной архитектуре AMD K8, должны были стать первыми четырёхъядерными процессорами AMD, а также первыми процессорами на рынке, в котором все 4 ядра расположены на одном кристалле (ранее ходили слухи о появлении четырёхъядерного процессора AMD, представляющего собой два двухъядерных кристалла Opteron).

Серийный выпуск четырёхъядерных Phenom II X4 начался в январе 2009 года, трёхъядерных Phenom II X3 – в феврале 2009 года, двуядерных Phenom II X2 – в июне 2009 года, а шестиядерных Phenom II X2 – в апреле 2010 года.

Athlon II – замена Sempron – представляет собой Phenom II, лишённый одного из важнейших его достоинств – большой кэш-памяти третьего уровня (L3), общей для всех ядер. Выпускается в дву-, трёх- и четырёхъядерных вариантах. Athlon II X2 производится с июня 2009 года, X4 – c сентября 2009 года, а X3 – c ноября 2009 года.

В 2008 году осуществлен выпуск архитектуры К10.5, основанной на К10.

Описание К10

К10 представляет собой 65нм процессор SOI. Состоит из 450 млн. транзисторов и имеет площадь ядра: 283 кв.мм. Напряжение:1.05V-1.38V. Socket: AM2+(940 pin)/F(1207 pin)

Оригинальное ядро K10 имеет кодовое имя Barcelona (AMD), для сопроцессоров, предназначенных для серверов. Позже были выпущены процессоры для настольных компьютеров, там ядро K10 получило название Agena.

Все процессоры с ядром К10, попавшие на рынок в 2007 году, имеют степпинг В2 и ВА и содержат ошибку в контроллере памяти, из-за которой в определённых условиях микропроцессор может неправильно функционировать (так называемый «TLBbug»).

TLB bug

В связи с процессорами Agena и Barcelona (AMD) часто упоминается так называемая TLB bug или ошибка TLB. Данная ошибка встречается во всех четырёхъядерных процессорах AMD ревизии B2 и может привести в очень редких случаях к непредсказуемому поведению системы при высоких нагрузках. Данная ошибка критична в серверном сегменте, что явилось причиной приостановки всех поставок процессоров Barcelona (AMD) ревизии В2. Для настольных процессоров Phenom был предложен TLB patch который предотвращает возникновение ошибки путём отключения части логики TLB. Данный патч, хоть и спасает от TLB bug но также негативно влияет на производительность. Ошибка исправлена в ревизии B3.

TDP и ACP

С выходом процессоров Opteron 3G на ядре Barcelona (AMD) компания AMD ввела новую энергетическую характеристику под названием ACP (Average CPU Power) — средний уровень энергопотребления новых процессоров при нагрузке. AMD также продолжит указывать и максимальный уровень энергопотребления — TDP.

Обозначение

C появлением процессоров поколения К10 в ассортименте AMD изменились также их обозначения — под новыми обозначениями скрываются как модели, основанные на К10, так и на AMD K8

Система обозначений процессоров AMD

Серия процессоров Обозначение
Phenom X4 quad-core (Agena) X4 9xx0
Phenom X3 triple-core (Toliman) X3 8xx0
Athlon dual-core (Kuma) 7xx0
Athlon single-core (Lima) 1xx0
Semporn single-core (Sparta) 1xx0

Описание К 10.5

Следующее за Barcelona ядро серверных процессоров имеет кодовое имя Shanghai и производиться по 45 нм нормам. Однако это не простой перенос архитектуры K10 на новый техпроцесс. Его архитектура называется K10.5 и имеет расширенный набор инструкций, обладает 6 Мб распределенного кэша L3 и поддержкой сокета 1207+Ядро Deneb (Shanghai) представляет собой 45нм процессор поколения К10.5. Состоит из ~758 млн транзисторов и имеет площадь в 243 мм (против 731 млн и 246 мм у Intel Nehalem). Отличается увеличенным кэшем L3 (с 2 МБ до 6 МБ), а также незначительными оптимизациями архитектуры.

Основная цель — повышение частот процессорной линейки Phenom, снижение TDP, а также себестоимости производства. По словам AMD, процессоры Deneb/Shanghai обходят равночастотные Agena/Barcelona на величину до 35 %, обладая энергопотреблением на 30% ниже. Анонс процессоров Opteron на ядре Shanghai состоялся 13 ноября 2008. Процессоры Deneb ожидались в 1ом квартале 2009. Первые процессоры на ядре Deneb выпущены AMD 8 января 2009 года под именем Phenom II X4 (модели 920 и 940 Black Edition).

Особенности архитектуры К10

· Основным отличием процессоров поколения K10 от своих предшественников на базе AMD K8 является объединение четырёх ядер на одном кристалле, обновления протокола Hyper-Transport до версии 3.0, общий для всех ядер кэш L3, а также перспективная поддержка контроллером памяти DDR3. Сами ядра также были модернизированы по сравнению с ядрами AMD K8.

· Чипы K10 могут выполнять 64-битные SSE-инструкции как одну. Именно поэтому увеличение разрядности SSE-блоков так важно и производительность должна вырасти довольно значительно.

· Увеличена разрядность интерфейса между SSE-блоками и кэшем данных первого уровня. Теперь за один такт стала возможной загрузка двух 128-битных инструкций за такт против двух 64-битных у K8.

· Связь между кэшем L2 и контроллером памяти также увеличила разрядность и теперь составляет 128 бит.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 132
Бесплатно скачать Курсовая работа: Архитектура многокристального микропроцессора К10 и К10.5