Курсовая работа: Авиационный шум и защита от него
Требования по охране атмосферы регламентированы Законом РФ об охране атмосферного воздуха, санитарными нормами СН 245-71 и руководящими документами Госкомприроды.
Предусматриваемые устройства и мероприятия по охране атмосферы от совокупности выбросов всех технологических и вентиляционных источников выделения загрязняющих веществ должны обеспечивать соблюдение в жилой зоне предельно допустимых концентраций (ПДК), установленных Минздравом РФ. В местах воздухозаборов для систем механической и естественной вентиляции, включая аэрацию помещений, концентраций загрязняющих веществ не должны превышать 30% ПДК для рабочей зоны (ПДКрз).
Величины выбросов и условия поступления их в атмосферу, при которых обеспечивается соблюдение суммарных приземных концентраций в пределах нормируемых ПДК, квалифицируются как предельно допустимые выбросы (ПДВ). В тех случаях когда для снижения загрязнений по какому-либо веществу до ПДК действующий источник загрязнения воздуха должен быть дооборудован дополнительными устройствами (например, повышена высота трубы) или должны быть изменены условия поступления выбросов из источника в атмосферу (изменена температура газов и т.п.), выброс по рассматриваемому веществу квалифицируется как временно согласованный выброс (ВСВ).
Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Соблюдение этого требования достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.
На практике реализуются следующие варианты защиты атмосферного воздуха:
вывод токсичных веществ из помещений общеобменной вентиляцией;
локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязнённого воздуха в специальных аппаратах и его возврат в производственное или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху;
локализация токсичныхвеществ взоне их образования местной вентиляцией, очистка загрязнённого воздуха в специальных аппаратах, выброс и рассеивание в атмосфере;
очистка технологических газовых выбросов в специальных аппаратах, выброс и рассеивание в атмосфере; в ряде случаев перед выбросом отходящие газы разбавляют атмосферным воздухом;
Для соблюдения ПДК вредных веществ в атмосферном воздухе населённых мест устанавливают предельно допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.
Распространение газообразных примесей и пылевых частиц диаметром менее 10 мкм, имеющих незначительную скорость осаждения, подчиняется общим закономерностям. Для более крупных частиц эта закономерность нарушается, так как скорость их осаждения под действием силы тяжести возрастает. Поскольку при очистке от пыли крупные частицы улавливаются, как правило, легче, чем мелкие, в выбросах остаются очень мелкие частицы; их рассеивание в атмосфере рассчитывают так же, как и газовые выбросы.
В зависимости от расположения и организации выбросов источники загрязнения воздушного пространства подразделяют на затенённые и незатенённые, линейные и точечные. Точечные источники используют тогда, когда удаляемые загрязнения сосредоточены в одном месте. К ним относят выбросные трубы, шахты, крышные вентиляторы и другие источники. Выделяющиеся из них вредные вещества при рассеивании не накладываются одно на другое на расстоянии двух высот здания (с заветренной стороны). Линейные источники имеют значительную протяжённость в направлении, перпендикулярном к ветру. Это аэрационные фонари, открытые окна, близко расположенные вытяжные шахты и крышные вентиляторы.
Основным документом, регламентирующим расчёт рассеивания и определения приземных концентраций выбросов промышленных предприятий, является "Методика расчёта концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. ОНД - 86". Эта методика позволяет решать задачи по определению ПДВ при рассеивании через одиночную незатенённую трубу, при выбросе через низкую затенённую трубу и при выбросе через фонарь из условия обеспечения ПДК в приземном слое воздуха.
Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на: пылеуловители (сухие, электрические, фильтры, мокрые); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (абсорбционные, хемосорбционные,адсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твёрдых примесей, многоступенчатые пылеуловители). Их работа характеризуется рядом параметров. Основными из них являются активность очистки, гидравлическое сопротивление и потребляемая мощность.
Широкое применение для очистки газов отчастиц получили сухие пылеуловители -циклоны различных типов.
Электрическая очистка ( электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных и коронирующих электродах. Для этого применяют электрофильтры.
Для высокоэффективной очистки выбросов необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки.
Такие решения находят применение при высокоэффективной очистке газов от твёрдых примесей; при одновременной очистке от твёрдых и газообразных примесей; при очистке от твёрдых примесей и капельной жидкости и т.п. Многоступенчатую очистку широко применяют в системах очистки воздуха с его последующим возвратом в помещение.
Способы очистки газовых выбросов в атмосферу
Абсорбционный способ очистки газов, осуществляемый в установках-абсорберах, наиболее прост и с высокой степенью очистки, однако требует громоздкого оборудования и очистки поглощающей жидкости. Основан на химических реакциях между газом, например, сернистым ангидридом, и поглощающей суспензией (щёлочной раствор: известняк,аммиак, известь). При этом способе на поверхность твёрдого пористого тела (адсорбента) осаждаются газообразные вредные примеси. Последние могут быть извлечены с помощью десорбции при нагревании водяным паром.
Способ окисления горючих углеродистых вредных веществ в воздухе заключается в сжигании впламени и образовании СО2 и воды, способ термического окисления - в подогреве и подаче в огневую горелку.
Каталитическое окисление с использованиемтвёрдых катализаторов заключается в том, что сернистый ангидрид проходит через катализатор в виде марганцевых составов или серной кислоты.
Для очистки газов методом катализа с использованием реакций восстановления и разложения применяют восстановители (водород, аммиак, углеводороды, монооксид углерода). Нейтрализация оксидов азота NOx достигается применением метана с последующим использованием оксида алюминия для нейтрализации на втором этапе образующегося монооксида углерода.
Адсорбционно-окислительный способ представляется перспективным. Он заключается в физической адсорбции малых количеств вредных компонентов с последующим выдуванием адсорбированного вещества специальным потоком газа в реактор термокаталитического или термического дожигания.
В крупных городах для снижения вредного влияния загрязнения воздуха на человека применяют специальные градостроительные мероприятия: зональную застройку жилых массивов, когда близко к дороге располагают низкие здания, затем - высокие и под их защитой - детские и лечебные учреждения; транспортные развязки без пересечений, озеленение.
Список использованной литературы
1. Авиационная акустика, под ред. А.Г. Мунина. ч.1-2.М., 1996.
2. Аксёнов И.А., Аксёнов В.И. Транспорт и охрана окружающей среды. - М.: Транспорт, 1987.
3. Белов С.В. "Безопасность жизнедеятельности" М.: Высшая школа, 1999 г.
4. Данилов-Данильян В.И. "Экология, охрана природы и экологическая безопасность", М.: МНЭПУ, 1997 г.
5. Кукин П.П., Лапин В.Л. Основы радиационной безопасности в жизнедеятельности человека. Учебное пособие. Курск. - КГТУ, 1995.