Курсовая работа: Автоматизация методической печи

Перспективным направлением развития конструкций нагревательных печей в XXI веке является применение для утилизации теплоты печных газов малогабаритных, в частности, шариковых регенераторов. Регенеративные печи нового типа получают распространение в мире по мере накопления опыта их эксплуатации. Насадка малогабаритных регенераторов, применяемых в промышленных нагревательных печах, состоит из корундовых окатышей диаметром 20-25 мм, содержащих 98% Al2O3. Поверхность нагрева 1 м3 такой насадки в 10-15 раз больше, чем кирпичной насадки типа Сименс. Поэтому шариковый регенератор имеет небольшие габариты и может устанавливаться в стенах печи или в так называемой регенеративной горелке. Чтобы возвратить в печь с нагретым воздухом и, при необходимости, с газом как можно больше теплоты, уносимой дымом, насадка регенератора не должна прогреться по всей высоте, поэтому через 1-3 минуты делают перекидку клапанов – дымовоздушных и газовых, при этом температура дыма на выходе из регенератора не превышает 150-200°С.

Шариковые регенераторы возвращают в печь 85-90% теплоты уходящих из печи газов. Температура подогрева воздуха примерно на 100°С ниже температуры дыма на выходе из печи. Расход топлива на печь сокращается в 1,5-2,0 раза. Наибольший эффект относится к печам, не имевшим рекуператоров. Перевод действующих печей на регенеративное отопление требует установки дымососа для преодоления аэродинамического сопротивления шариковой насадки.

В 2003 году на Украине введена в эксплуатацию первая нагревательная печь с шариковыми регенераторами. На комбинате "Криворожсталь" реконструирован типовой рекуперативный нагревательный колодец с отоплением из центра подины, в результате чего трубчатые керамические рекуператоры заменены шариковыми регенераторами для подогрева воздуха. Корундовые шарики изготавливаются Белокаменским огнеупорным заводом (Украина). Реконструкция выполнена с минимальным изменением существующей кладки колодца.

Для переключения регенераторов с дыма на воздух и с воздуха на дым через каждые 3 минуты служит один перекидной клапан.

Новизна конструкции состоит в том, что имеется по-прежнему одна постоянно включенная горелка в центре подины вследствие чего отсутствует перекидной газовый клапан, характерный для регенеративных печей.

Методические печи используются для нагрева металла перед прокаткой на листовых и сортовых станах. Методические печи относятся к печам непрерывного действия. Металл в своем движении последовательно проходит зоны печи: методическую (не отапливаемая зона предварительного нагрева); сварочную, в которой осуществляется быстрый нагрев металла; и томильную, где происходит выравнивание температур по сечению заготовки.

Достоинствами методических нагревательных печей являются непрерывный характер работы и относительно стабильный благодаря этому тепловой режим. Непрерывный характер работы методических печей облегчает автоматическое регулирование теплового режима.

В условиях нагрева заготовок с переменными геометрическими и теплотехническими параметрами, а также при переменном темпе выдачи заготовок из печей получение требуемого качества нагрева заготовок возможно лишь при автоматическом управлении работой участка нагревательных печей. Печи различаются по конструкции, но, тем не менее, у всех печей есть много общего в схемах автоматического контроля и регулирования.

Автоматически контролируются следующие параметры: температура (рабочего пространства в одной или нескольких точках; продуктов сгорания перед и после рекуператора и перед дымососом; подогретых воздуха и газа; первой секции металлических рекуператоров); расход (топлива на печь и по зонам отопления; воздуха; охлаждающей воды, если имеются водо-охлаждаемые детали); давление (в рабочем пространстве печи; газа и воздуха); разрежение в одной или нескольких точках дымового тракта.

Автоматически регулируются: температура в зонах рабочего пространства; давление в рабочем пространстве; качество сжигания топлива.

Для оповещения персонала о нарушениях в работе и автоматического отключения печи при возникновении аварийных ситуаций предусматривается система звуковой и световой сигнализации и отключения газа и воздуха на печь. Отсечка подачи газа и воздуха к горелкам осуществляется при падении давления одного из компонентов горелки и отключении питания приборов КИПиА.

Наиболее сложным вопросом управления нагревательными печами является определения законченности процесса нагрева заготовки. Если определить температуру поверхности еще возможно, то задача определения нагрева центра заготовки является сложной и неразрешимой в промышленном масштабе. Сейчас наиболее эффективно использовать математическую модель нагрева слитка по данным которой управлять процессом нагрева. Для оценки адекватности модели необходимо проводить эксперименты на заготовках и периодически адаптировать ее под текущие производственные условия.

Тепловые процессы, протекающие в нагревательных печах, крайне многообразны. Процессы горения, движения газов, теплообмена, протекающие при высоких температурах сложны и неразрывны. Поэтому исследование теплообмена и его математическое описание представляет собой крайне трудную задачу, решение которой имеет важное теоретическое и практическое значение. Для выработки надежного режима работы необходимы многочисленные экспериментальные исследования на действующих печах. Однако экспериментальное изучение теплообмена в высокотемпературных печах весьма затруднено. Такие эксперименты как измерение тепловых потоков в различных точках по длине и ширине печи, температуры факела и кладки, продвижение через печи сляба с размещенными в нем термопарами и ряд других могут выполняться лишь единично из-за сложности их, что не может обеспечить изучения многочисленных вариантов изменения режимных параметров печей. В таких условиях незаменимым становится математическое моделирование, требующее выполнения двух непременных условий: наличия возможности более точной математической модели процесса в обязательной строгой адаптации модели на действующем агрегате. Адаптация математической модели также требует сложных экспериментов на печах, однако, не столь многочисленных, как при эмпирическом исследовании в печах. Строго адаптированная математическая модель позволяет с использованием компьютера проанализировать практически любое число вариантов, чего совершенно невозможно сделать при эмпирическом методе исследования, и выбрать оптимальные условия тепловой работы печей для нагрева того или иного металла. При создании моделей методических печей встречается ряд трудностей, связанных со сложностью протекающих процессов и с недостаточной изученностью многих из них.

Методическая печь состоит из нескольких зон, ни одну из которых нельзя рассматривать автономно. Даже первая по ходу газов — томильная зона находится в состоянии теплообмена с последующей сварочной зоной. Все зоны (кроме томильной) испытывают на себе влияние других зон не только в результате протекания процессов взаимного теплообмена, но и в результате перехода продуктов сгорания из предыдущей зоны в последующую. Недостаточная изученность процессов тепловыделения в пламени и теплоотдачи от пламени, усиленных влиянием приходящих из других зон продуктов сгорания, крайне затрудняет решение вопроса о температуре в каждой зоне, которая может изменяться не только по длине, но по ширине и высоте печи. Все это делает решение по выбору температуры весьма приближенным. Очень часто температуры в томильной и сварочных зонах принимаются постоянными.

В методических печах преобладающим (80%) является теплообмен излучением. Подавляющее большинство компонентов теплообмена излучением в рабочем пространстве печей имеет селективные радиационные свойства, которые должны быть учтены при расчете теплообмена, что также создает большие математические трудности.

В процессе нагрева металл подвергается окислению, причем по мере продвижения металла к торцу выдачи толщина слоя окалины увеличивается. Окалина представляет собой прежде всего значительное тепловое сопротивление: установлено, что перепад температуры в слое окалины достигает 100 С и более. Но этим влияние окалины на процесс нагрева не ограничивается. Окалина имеет отличные от металла радиационные свойства (спектральные степень черноты и поглощательную способность), что также оказывает влияние на теплообмен излучением.

В методических печах предприятий черной металлургии нагреву поддаются более двух с половиной тысяч различных марок сталей, каждая из которых характеризуется своими величинами теплопроводности и теплоемкости, зависящими от температуры. Это крайне усложняет математическую модель, для многочисленных марок сталей.

В соответствии с уравнением энергетического баланса существует три уровня потребления энергии. Первый уровень характеризуется эффективным поглощением тепла слябом в процессе нагрева, и составляет 60 % общей энергии. Во втором уровне нагрев происходит за счет сгорания топлива, составляя 20 - 30 %. Во время третьего уровня, тепло поглощается за счет излучения поверхности и других утечек энергии, обусловленных структурой печи. Таким образом, температура уходящих продуктов сгорания является переменной, контролирующей расход энергии.

Существуют два вида потерь энергии, причиной которых является уходящие продукты сгорания топлива и потери тепла, связанные с неполным сгоранием топлива. Следовательно, схема исследования сохранения энергии включает уменьшение температуры уходящих продуктов сгорания и повышение эффективности сгорания топлива.

Таким образом, нагревательные печи металлургии и машиностроения сегодня и в ближайшем будущем должны обеспечивать:

- высокую равномерность и стандартность нагрева изделий на основе управления процессами движения газов и сжигания топлива;

- глубокую утилизацию теплоты уходящих газов на уровне КИТ = 85- 90%, в частности с применением малогабаритных регенераторов для нагрева воздуха и, в случае необходимости, газообразного топлива с соблюдением экологических требований;

- минимальные потери теплоты на разогрев футеровки и через элементы конструкции печей в окружающую среду путем использования огнеупорных и теплоизоляционных волокнистых изделий;

- малоокислительный режим нагрева со снижением потерь металла в окалину до 0,5% массы нагреваемых изделий.

Актуальным научным направлением развития нагревательных печей является разработка новых горелочных устройств для объемного сжигания топлива с высокотемпературным воздухом, а также систем отопления нагревательных и термических печей с малогабаритными регенераторами.

2. Конструкция агрегата и технологический процесс

Методическая печь — это агрегат непрерывного действия для нагрева металла перед его прокаткой или ковкой. В данном проекте рассматривается методическая печь стана 3000 комбината имени Ильича.

Нагрев слябов производится в нагревательных семизонных печах с шагающими балками, с двухсторонним нагревом, с торцевым посадом и выдачей.

Печь имеет 7 технологических зон, в том числе, первая зона объединяет верхние и нижние горелки у торца загрузки перед дымоходом. Далее по ходу металла расположены 3 зоны сверху (3,5,7) и 3 зоны снизу (2,4,6).

К-во Просмотров: 544
Бесплатно скачать Курсовая работа: Автоматизация методической печи