Курсовая работа: Автоматизация технологического процесса варки целлюлозы в варочном котле периодического действия
Кроме воздействия регулятора, для объекта регулирования входными величинами также являются внешние возмущения, например изменение давления греющего пара, изменение нагрузки. Для автоматического регулятора входной величиной будет измеряемое им отклонение регулируемого параметра, а выходной - воздействия регулятора на объект.
В большинстве случаев элементы и звенья системы обладают свойством направленности действия. Это значит, что передача энергии или вещества в элементе или звене осуществляется в направлении от входа к выходу. Кроме этих общих свойств, элементы и звенья имеют существенные различия. Элементы характеризуются их функциональным назначением: измерительный элемент, усилительный или преобразующий (управляющий) элемент, исполнительный элемент, регулирующий элемент. Звенья же характеризуются статическими и динамическими свойствами. Таких элементарных звеньев имеется немного — пропорциональное, интегрирующее, апериодическое, колебательное, дифференцирующее и звено запаздывания.
Система «объект — регулятор» образует замкнутый контур регулирования. По числу контуров системы регулирования разделяются на одноконтурные и многоконтурные.
Возмущающие воздействия или просто воздействия разделяются на внутренние и внешние. К внутренним относится регулирующее воздействие а к внешним — воздействие по нагрузке, а также изменения задания регулятору.
Автоматические регуляторы разделяются на две группы: регуляторы прямого и непрямого действия. Регуляторами прямого действия называются такие регуляторы, к которым не нужно подавать энергию от внешних источников. Такие регуляторы изменяют размер регулирующего воздействия за счет энергии, передаваемой от объекта регулирования к чувствительному элементу, например поплавку, измеряющему отклонение регулируемого параметра. Регуляторы непрямого действия нуждаются в энергии от внешнего источника.
На рисунке 3 представлена структурная схема одноконтурной системы автоматического регулирования с регулятором непрямого действия, а на рисунке 4- с регулятором прямого действия. Структурная схема дает представление о составе системы автоматического регулирования и назначении ее элементов.
Рисунок 3 - Структурная схема одноконтурной системы автоматического регулирования с регулятором непрямого действия
Рисунок 4 - Структурная схема одноконтурной системы автоматического регулирования с регулятором прямого действия
По характеру алгоритма функционирования АСР подразделяются на стабилизирующие, программные и следящие.
Стабилизирующей АСР называется система, алгоритм функционирования которой содержит предписания поддерживать регулируемую величину на постоянном значении.
Программной АСР называется система, алгоритм функционирования которой содержит предписания изменять регулируемую величину в соответствии с заранее заданной функцией.
Следящей АСР называется система, алгоритм функционирования которой содержит предписания изменять регулируемую величину в зависимости от неизвестной заранее переменной величины на входе автоматической системы.
В зависимости от вида закономерности изменений сигналов в АСР они подразделяются на линейные и нелинейные.
К линейным АСР относятся системы, характерной особенностью которых является суперпозиция их движений, т.е. происходящий в линейных системах под влиянием нескольких воздействий процесс определяется суммой процессов, каждый из которых является результатом только одного воздействия на систему.
К нелинейным относятся системы, к которым не применим принцип суперпозиции.
В зависимости от числа регулируемых величин системы подразделяются на одномерные и многомерные.
Одномерной АСР называется система с одной регулируемой величиной.
Многомерными системами называются системы с несколькими регулируемыми величинами.
Многомерные системы в свою очередь подразделяются на системы связанного и несвязанного регулирования.
Существует классификация АСР по функциональному назначению, делящая их на системы регулирования температуры, давления, расхода, уровня и т.п.
1.3 Описание технологической схемы
Принципиальная технологическая схема процесса варки представлена на рисунке 5.
В состав варочной установки входят: ГБЩ – бак-аккумулятор горячего белого щелока, ГЧЩ – бак-аккумулятор горячего черного щелока, ПрЩ – бак промывного щелока, КЩ – бак вытесненного теплого щелока (бак К-щелока), варочные котлы, вымывной резервуар. Трубопровод циркулирующего варочного щелока имеет паровые сопла П.С. для подачи пара высокого давления для нагрева циркуляционного щелока во время варки. Также имеются теплообменники ТП для подогрева поступающего в бак-аккумулятор белого щелока, для охлаждения горячего черного щелока, подаваемого на выпарку из бака-аккумулятора, для догрева содержимого бака белого щелока. Варочный котел имеет циркуляционное сито в нижней части котла, вытеснительное сито в верхней части, кольцевые спрыски для щелока в нижнем конусе.
Теплый белый щелок из цеха каустизации по линии 1 поступает через теплообменник, где подогревается до температуры 155-160 °С горячим черным щелоком, в бак-аккумулятор горячего белого щелока ГБЩ. Догрев содержимого бака-аккумулятора белого щелока осуществляется циркуляцией через теплообменник, в который подается пар высокого давления.
Щепа загружается в котел через загрузочную воронку со шнекового конвейера. Одновременно осуществляется подача пара низкого давления для уплотнения и пропарки щепы и закачка через нижний конус котла теплого щелока на пропитку. На пропитку щелок закачивается из бака промывного щелока ПрЩ. Путем подачи в линию закачки щелока на пропитку по линии 2 холодного белого щелока осуществляется регулирование остаточной щелочности при пропитке. Воздух из котла во время загрузки через вытеснительное сито отсасывается вентилятором через каплеотделитель К. К концу пропитки, когда котел заполнен "под горло", щелоковым насосом создается избыточное давление и котел становится гидравлически заполненным. Происходит "холодная" пропитка щепы под давлением, что очень благоприятно влияет на последующие результаты варки.
В конце пропитки начинается вытеснение пропиточного щелока горячим черным щелоком из бака ГЧЩ. Пропиточный щелок вытесняется в бак теплого щелока КЩ по линии 27. После вытеснения определенного количества пропиточного щелока в котел подается требуемое на варку количество варочного щелока. Для этого горячий белый щелок из бака ГБЩ смешивается с горячим черным щелоком из бака ГЧЩ и подается в котел. Варочный щелок во время закачки проходит через теплообменник, где догревается паром высокого давления до температуры варки, если это необходимо. Вытесняемый щелок с температурой выше 100 °С направляется в бак горячего щелока ГЧЩ.
После закачки горячего варочного щелока температура содержимого котла составляет 155-160 °С. Нагрев варочного щелока во время варки осуществляется подачей пара высокого давления в паровые сопла, установленные на циркуляционном трубопроводе. В фазе варки в варочном котле поддерживается требуемый уровень температуры и давления до тех пор, пока не будет достигнуто заданное значение Н-фактора. Циркуляция осуществляется следующим образом: варочный щелок отбирается через циркуляционное сито в нижней части котла, подогревается паром высокого давления в трубопроводе и возвращается в котел через верхнее вы-теснительное сито и через нижний конус. Температура варки составляет 165 °С. Регулирование концентрации эффективной щелочи во время варки осуществляется подачей горячего белого щелока по линии 8 в циркуляционный трубопровод. Избыток горячего черного щелока возвращается в бак ГЧЩ.