Курсовая работа: Бентонит как природный наноматериал
10
15
В элювиальных бентонитах содержание монтмориллонита меньше, соответственно больше примесей, особенно смешаннослойных образований; в них имеются, в зависимости от материнских пород, минералы никеля, кобальта, железа, титана, кальцит, доломит и др.
Терригенно- и коллоидно-осадочные бентониты имеют содержание монтмориллонита минимальное, едва позволяющее им называться бентонитами. Монтмориллонит щелочноземельный. Содержание примесей – смешаннослойных образований, каолинита, гидрослюд – высокое; присутствуют также опал, аллофан.
Таким образом, бентониты разных генетических типов различимы по минеральному составу. Но могут быть и отклонения от этой схемы как по содержанию монтмориллонита, так и по содержанию примесей. В частности, щелочноземельные монтмориллониты встречаются во всех типах, кроме того, содержание породообразующего монтмориллонита может сильно варьировать по разным причинам. Поэтому необходимо рассматривать сами минералы монтмориллонитовой группы в бентонитах.
Минералы монтмориллонитовой группы в зависимости от изоморфных замещений подразделяются на диоктаэдрические (монтмориллонит, бейделлит, нонтронит) и триоктаэдрические (сапонит, гекторит) виды [1].
Монтмориллонит – Al3.33Mg0.67(Si8О20)(OH)4 + 0,67Na
Бейделлит – (Si7.33Al0.67)(Al4)O20(OH)4
Нонтронит – (Si7.33Al0.67)(Fe4)O20(OH)4
Сапонит – Mg6(Si7.33Al0.67)O20(OH)4 + 0,33Ca
3 Структура бентонитовых глин
3.1 Общие сведения о структуре глинистых минералов
Атомная структура обычных глинистых минералов достаточно детально изучена многочисленными исследователями, работы которых основываются на обобщениях Паулинга [4].
Атомная структура большинства глинистых минералов сложена двумя единицами. Одна структурная единица состоит из двух слоев плотноупакованных кислородов или гидроксилов, в которых атомы алюминия, железа или магния расположены в октаэдрической координации таким образом, что каждый из них находится на равном расстоянии от шести кислородов или гидроксилов (рис. 2). В случае заполнения октаэдрических позиций алюминием, чтобы сбалансировать структуру, представляющую собой структуру гиббсита А12(ОН)6, заполнены должны быть только две трети возможных позиций. В случае магния, чтобы сбалансировать структуру, представляющую собой структуру брусита Mg3(OH)6, необходимо заполнение всех возможных позиций. Нормальное расстояние между атомами кислорода составляет 2,60 Å, а между гидроксилами обычно около 3 Å. Однако в этой структурной единице расстояние между гидроксилами равно 2,94 Å, а пространство, доступное для атома в октаэдрической координации, составляет около 0,61 Å. Толщина этой структурной единицы в структурах глинистых минералов равна 5,05 Å.
Рисунок 2 – Схематическое изображение отдельного октаэдра (а) и октаэдрической сетки структуры (б).
Вторая структурная единица образована кремнекислородными тетраэдрами. В каждом тетраэдре атом кремния одинаково удален от четырех кислородов или гидроксилов, расположенных в форме тетраэдра с атомом кремния в центре, чтобы сбалансировать структуру. Кремнекислородные тетраэдры сгруппированы таким образом, что создают гексагональную сетку, которая бесконечно повторяется и образует лист состава Si4О6(OH)4 (рис. 3). Тетраэдры расположены так, что все их вершины обращены в одну сторону, а основания лежат в одной и той же плоскости (здесь могут быть исключительные случаи, в которых некоторые тетраэдры перевернуты). Эту структуру можно рассматривать как структуру, состоящую из перфорированной плоскости кислородных атомов, расположенных в плоскости основания тетраэдрических групп; плоскости атомов кремния с атомами кремния, расположенными в полости в месте соединения трех атомов кислорода и, следовательно, образующими гексагональную сетку; плоскости атомов гидроксила, в которой каждый гидроксил расположен непосредственно над кремнием на вершине тетраэдров. Открытую гексагональную сетку можно рассматривать как сетку, образованную тремя нитками атомов кислорода, пересекающимися под углом 120°. Расстояние между атомами кислорода в листах кремнекислородных тетраэдров составляет 2,55 Å, а пространство, доступное для атома в тетраэдрической координации, около 0,55 Å. Толщина этой структурной единицы в структуре глинистых минералов равна 4,93 Å [4].
Рисунок 3 – Схематическое изображение отдельного кремнекислородного тетраэдра (а)и сетки кремнекислородных тетраэдров (б).
Сложный характер структур глинистых минералов определяется простыми геометрическими соотношениями между гексагональной кремнекислородной сеткой и слоем гидроксилов или слоем молекул воды. Кремнекислородная сетка является достаточно жесткой и определяет пластинчатый характер и размеры параметров а и b всех подобных минералов. Вершины тетраэдров этой сетки составляют часть гидроксильного слоя между отдельными кремнекислородными сетками. Основания тетраэдров также могут примыкать к слою гидроксилов или молекул воды. Благодаря этому возникает бесчисленное множество различных путей соединения слоев друг с другом. Вышеописанные структуры отвечают определенным типам упаковки слоев, характеризующимся, по крайней мере, некоторыми элементами упорядоченности. Несовершенство таких структур, несомненно, определяется их способностью легко поглощать или выделять воду, а также их ионообменными свойствами. В совершенных структурах атомам для изменения своих положений необходимо преодолеть определенный энергетический барьер. В несовершенных структурах величина этого барьера может принимать различные, в том числе и близкие к нулю значения, и перестановка атомов осуществляется без особых затруднений.
3.2 Смешанослойные минералы
Чаще всего в природе встречаются двухкомпонентные смешанослойные образования, состоящие из переслаивания диоктаэдрических или триоктаэдрических пакетов. К диоктаэдрическим разновидностям относятся сочетания из 1:1 неразбухающих и 2:1 разбухающих, 2:1 неразбухающих и разбухающих, 2:1:1 (2:2) неразбухающих и 2:1 разбухающих пакетов. Триоктаэдрические разновидности представлены сочетанием 2:1 неразбухающих и разбухающих, 2:2 неразбухающих и 2:1 разбухающих пакетов, а также переслаивания 2:2 разбухающих и неразбухающих пакетов различного типа. Кроме того, среди сочетаний 2:1 слоев различного типа выделяются ди-три-октаэдрические разновидности [5].
Минералы со структурой типа 2:1 по характеру межслоевых комплексов могут быть подразделены на три группы [6].
Первая группа – межслоевое пространство не заполнено никакими катионами или молекулами; минералы не образуют изоморфных серий, изоморфных замещений в структуре среди катионов нет; имеет два широко распространенных представителя: диоктаэдрический – пирофиллит, триоктаэдрический – тальк.
Вторая группа – в межслоевом пространстве в жесткой (двенадцатерной или шестерной) координации располагаются крупные катионы (К+, Na+), которые компенсируют дефицит в положительных зарядах, возникший при изоморфных замещениях главным образом Si4+ на А13+ в тетраэдрической сетке. Межслоевое пространство стабильно. К этой группе минералов относятся многочисленные разновидности диоктаэдрических и триоктаэдрических слюд и гидрослюд.
Третья группа – межслоевое пространство заполнено катионоводными комплексами, состоящими из гидратированных катионов, способных к обмену, и молекул воды, уложенных в слои толщиной от одной до четырех и более молекул; здесь легко могут размещаться молекулы органических соединений разнообразных форм и размеров. Межслоевое пространство способно изменять размеры нормально к базисной плоскости в широких пределах. К этой группе минералов относятся многочисленные изоморфные ряды и разновидности диоктаэдрических и триоктаэдрических монтмориллонитов (смектитов) и вермикулитов.
3.3 Структура монтмориллонитовых слоев
Монтмориллонит – тонкодисперсный минерал белого, иногда розоватого или зеленоватого цвета. Кристаллохимическая формула идеальных диоктаэдрических смектитов имеет вид Si8Al4О20(OH)4 nH2О, что отвечает следующему среднему химическому составу (в %): SiО2 66,7; А12О3 28,3; Н2О 5. Однако состав природных монтмориллонитов всегда отличается от теоретического состава вследствие изоморфных замещений кремния в тетраэдрической сетке на алюминий и алюминия в октаэдрическом слое на железо, магний, литий [7].
Монтмориллониты – это глинистые минералы, образующие очень маленькие и несовершенные кристаллы. Их структура весьма близка к структуре пирофиллита и талька и характеризуется беспорядочной упаковкой слоев (рис. 4). Вода в структуре монтмориллонита располагается между талькоподобными силикатными слоями. Кроме воды, в структуре монтмориллонита имеются обменные катионы, располагающиеся между силикатными слоями, которые обладают некоторым отрицательным зарядом [2].