Курсовая работа: Біологічна продуктивність як основа функціонування різних екосистем та біотопів

Вторинна продукція складається з органічних речовин, які утворюються при гетеротрофному типі харчування. Вторинна продукція завжди нижча, ніж первинна, оскільки, по-перше, не вся первинна продукція з'їдається гетеротрофними організмами, частина її накопичується у ґрунті у формі гумусу (до речі, кам'яне вугілля - це також залишок мінералізованої біомаси, яка створена автотрофними організмами), і, по-друге, гетеротрофи не можуть забезпечити 100% перетворення первинної продукції у вторинну.

Загальна біологічна продукція на планеті не перевищує 0,3-0,5 кг/м2 за рік унаслідок того, що на Землі переважають території з низькою продуктивністю (пустелі, океани) [2].

Можна говорити про біомасу окремого організму або про біомасу того чи іншого виду рослини чи тварини. Біомасу вимірюють в одиницях маси (сухого залишку) на одиницю поверхні, тобто у вигляді кг/м2 , ц/га, т/кмг і т.п. У зв'язку з тим, що біомаса формується в результаті процесу живлення, спорідненого зі зв'язуванням енергії, для оцінки розміру біомаси придатні й енергетичні одиниці (джоулі, калорії та ін.). Ця енергетична форма вираження має дві переваги. Вона показує, наскільки енергетично ефективними були процеси утворення біологічної маси даного виду, а також дозволяють об'єктивно порівнювати організми або екосистеми, в яких біомаса має різний хімічний склад. Оцінка розміру продукції та запасів біомаси в масштабах земної кулі в цілому - досить важка справа. Загальна її методика ще не розроблена, і дані різних авторів відрізняються. Сумарна біомаса всієї біосфери Землі в середньому оцінюється в 1,8х1018 г або 30х1021 Дж. Первинна продукція земної кулі досягає 100 млрд. т/рік. За даними В А. Ковди (1973), загальна біомаса суходолу дорівнює 3х1012 - 1х1013 тонн. На суходолі основний внесок роблять ліси. У тропічних лісах чиста первинна продукція досягає 2016, а в лісах помірної зони - 1 242 г/м2 /рік. Океани мають низьку первинну продукцію, що пов'язано, головним чином, із нестачею поживних речовин для рослин. На долю океанів та морських акваторій припадає 55x109 тонн сухої біомаси. У природному середовищі всі живі організми мешкають поряд. Співіснуючі рослини та тварини звичайно мають різні типи та способи живлення. Але для певних груп, що проживають разом, базовий тип живлення є однаковим. У цьому випадку й роль цих організмів в екосистемі є також однаковою. Так, наприклад, у лісі ростуть і великі дуби, і ліани, і трави, і мохи. Конкретні механізми оптимізації фотосинтезу в них різні, але роль в екосистемі ідентична: усі вони мають автотрофне живлення та здійснюють первинний синтез органічних речовин. У цьому зв'язку з урахуванням основної екосистемної функції живі організми об'єднуються в три важливі групи: продуценти, консументи та редуценти. Групу консументів поділяють на кілька підгруп: первинні, вторинні і т.д.

Продуценти - це всі організми з автотрофним живленням. Як компоненти екосистеми вони синтезують органічну речовину та накопичують рослинну біомасу. Унаслідок цього при вирішенні суто екологічних проблем іноді неважливо, до якого конкретного виду належить даний організм - він оцінюється лише за кількістю та якістю біомаси, яку продукує.

Первинними консументами називаються всі рослиноїдні організми, тобто всі фітофаги, їхня їжа - це рослинна біомаса. У процесі живлення вони перетворюють її в нову форму - в органічні речовини свого тіла. Корова, кріль, колорадський жук у цьому розумінні займають однакову екологічну позицію. Вони - первинні консументи.

Групу вторинних консументів складають усі м'ясоїдні організми, їжею їм служать фітофаги, тобто рослиноїдні організми. Основними представниками цієї екологічної групи є хижаки та тварини, що живляться мертвими організмами.

І, нарешті, редуцентами називають групу мікроорганізмів (але не лише їх), у ході трофічної діяльності яких органічна речовина руйнується та мінералізується. Так, у ґрунті різні дрібні черв'яки та личинки комах живляться органічними речовинами відмерлих частин рослин (опад) та відмерлими тваринами. Органічні речовини, проходячи через їхній травний шлях, сильно спрощуються та, у свою чергу, стають їжею для ґрунтових мікроорганізмів і грибів, які завершують деструкцію органічних речовин.

Розглянуті групи організмів, кожна з яких виконує свою екосистемну функцію, відповідно складають так звані трофічні рівні. У спеціальній екології дуже важливо знати, до якого трофічного рівня належить той чи інший організм. Це відразу визначає його екосистемну позицію.

РОЗДІЛ 2. Фактори продуктивності та її контроль

2.1 Генетичні фактори продуктивності

У всіх живих організмів рівень біопродуктивності чітко зумовлений їхньою видовою належністю і, відповідно, контролюється генотипом. Генотип визначає й іншу властивість живих організмів, що впливає на планетарне накопичення біомаси, темпи розмноження. У результаті продукція, що створюється тим чи іншим живим організмом, залежить від двох факторів:

1) інтенсивності біопродукційного процесу;

2) темпів розмноження.

Обидва ці фактори мають генетичну зумовленість.

У тих випадках, коли рівень біопродукційного процесу досить високий, він визначає запаси біомаси, які створюються даним організмом. У мікроскопічних організмів при їх мікроскопічних розмірах тіла накопичення біомаси цілком визначається темпами розмноження. Окремі акти розмноження бактерій та інших мікроорганізмів у сприятливих умовах можуть відбуватися кожні 30-60 хвилин. Теоретично це може призвести до того, що вже протягом кількох років мікроорганізми могли б сформувати біомасу розміром із земну кулю. Однак цього не спостерігається, оскільки швидкість розмноження мікроорганізмів обмежена великою кількістю зовнішніх факторів і, перш за все, нестачею органічної речовини для живлення. Тому в сучасній біосфері Землі сумарна біомаса мікроорганізмів невелика. Найбільша її частина зосереджена у ґрунті. За підрахунками спеціалістів ґрунт містить 0,3 кг/м2 бактерій, 0,3 - грибків, 0,15 - актиноміцетів.

У вищих зелених рослин продукування біомаси коливається в дуже широких межах. Це пов'язано з розмірами їхнього тіла. Особини ряски, наприклад, мають масу всього в кілька грамів, а маса найбільшого на нашій планеті дерева секвої гігантської, що росте в Каліфорнії (СІЛА), становить приблизно 2 тис. тонн.

Дослідження селекціонерів та тисячолітній досвід ведення сільського господарства показали, що як у рослин, так і у тварин продукція дійсно контролюється генетично, але спеціального «гену врожайності» немає. Здатність до формування біомаси визначається генотипом у цілому. Незалежні набори генів впливають на морфологічні, фізіологічні та біохімічні параметри, що контролюють процес накопичення біомаси.

Світу живих істот властива загальна закономірність: чим більший розмір біомаси особини певного виду рослини чи тварини, тим нижчий темп розмноження та менша кількість потомства продукується за один акт репродукції. Природа немовби контролює продукційний процес, не допускаючи перевиробництва біомаси одного виду та сприяючи збільшенню біомаси різних видів.

Окремі рослини та тварини відрізняються високим рівнем біопродукції. Найчастіше це пов'язано з явищем поліплоїдії. Поліплоїдія - це природне чи штучне збільшення кількості хромосом в ядрах. Найбільш характерна вона для рослин, але спостерігається й у тварин, зокрема властива дощовим черв'якам. Особини поліплоїдів відрізняються великими розмірами і мають підвищену стійкість до несприятливих факторів. У сільському господарстві у зв'язку з цим ведеться цілеспрямована робота щодо створення поліплоїдів із максимальною продуктивністю. Підвищує біопродукцію і гібридизація.

Узагальнюючи викладений вище матеріал, варто підкреслити, що вимоги кожного з видів організмів до екологічних факторів високо специфічні. Ця твердо встановлена закономірність уперше була сформульована ЛТ. Раменським (1924) й отримала назву правила екологічної індивідуальності видів [8].

2.2 Екологічний контроль продуктивності

Особливості навколишнього середовища і, в першу чергу, режим абіотичних факторів помітно впливають на процес синтезу органічної речовини автотрофними та гетеротрофними організмами.

Загальна зумовленість біопродукції екологічними факторами підпорядковується закону толерантності (рис. 2.1). Відповідно до цього закону в амплітуді дії того чи іншого фактору є зона оптимуму, у межах якої біопродукція максимальна, і дві зони песимуму, в області яких формування біопродуктивності гальмується або нестачею даного ресурсу, або його надлишком.

Рис. 2.1. Загальний вигляд кривої, що показує залежність розміру біопродукції живих організмів від екологічних факторів [8]:

2 - зона оптимуму, 1 та 3 - зони песимуму.

Сукупність ресурсів та умови, що сприяють можливості отримання біологічної продукції від живих організмів, розуміють як родючість природного угіддя. Розрізнюють природну родючість як вихідну потенційну продуктивність угіддя, тобто ділянки суходолу або водойми, та економічну родючість як реальну кількість біологічної продукції, яку можна отримати від даного угіддя.

Природна родючість є базовою властивістю будь-якої природної екосистеми. Отримання продукції внаслідок природної родючості безвитратне. Витрати необхідні тільки для збору біомаси та її доставлення в потрібне місце. Економічна родючість - поняття більш складне. Воно визначається як співвідношення між одержаною біомасою та витратами матеріалів, енергії та праці на її отримання. Економічна родючість може бути від'ємною величиною, коли вартість сукупних витрат перевищує вартість біопродукції. При цьому «вартість» розуміється в грошовому вираженні, але можливе її вираження у формі енергетичних одиниць.

Ресурсами, необхідними для обміну речовин зелених рослин, є вуглекислий газ, вода, мінеральні речовини та сонячна енергія. У тварин головним є доступність та якість їжі, кисень та вода.

Температура . У зелених рослин температурний режим найчастіше виявляється критичним для продукційного процесу. Температура впливає майже на всі біологічні процеси рослин. Із підвищенням температури змінюється розчинність у клітинному соку різноманітних компонентів обміну речовин і, в тому числі, вуглекислого газу. У межах амплітуди температури від 0о С до 30°С підвищується активність майже всіх ферментів. У результаті при температурі 20-30°С фотосинтез має свій максимум. В усіх зелених рослинах підвищення температури від 0°С до 15°С веде до помітного зростання швидкості росту, з 15о С до 30°С вона майже постійна, а при температурі, більшій за 30°С, швидкість росту знижується. Метод «суми ефективних температур» в його різновидах широко застосовується в агрономії для оцінки умов росту та розвитку рослин.

Існує дві групи тварин - теплокровні та холоднокровні. У птахів та ссавців температура тіла постійна і підтримується обмінними процесами. Вони порівняно автономні щодо температурного режиму екотопу. У холоднокровних тварин такої автономності немає. Але навіть і теплокровні тварини реагують на температуру. Відомо, що як вівці (теплокровні), так і бджоли (холоднокровні організми) мають схильність збиватися в тісні групи при похолоданні. Інші види захищаються від похолодання шляхом міграцій в теплі регіони або впадають у зимову сплячку. Завдяки теплокровності вищі тварини менше залежать від температури навколишнього середовища, і тому температурна зона поширення тварин ширша, ніж у рослин, їхня біопродукція не так тісно пов'язана з температурою, як у рослин.

Вода . Вода є важливим фактором біопродукційного процесу рослин та тварин. Рослинам потрібно дуже багато води для процесу фотосинтезу, вода в них не стільки ресурс живлення, скільки речовина, за допомогою якої регулюється температура тіла шляхом випаровування з поверхні листків досить великої кількості води.

К-во Просмотров: 160
Бесплатно скачать Курсовая работа: Біологічна продуктивність як основа функціонування різних екосистем та біотопів