Курсовая работа: Черные дыры и скорость звездообразования
Согласно новым данным, полученным исследователями из университета Джонса Хопкинса (The Johns Hopkins University), необычайно высокие скорости звездообразования, наблюдаемые в некоторых галактиках, могут быть связаны с наличием в их центрах черных дыр.
Галактики с высокими скоростями процессов звездообразования и галактики с активными черными дырами долго рассматривались как различные явления. Новые результаты говорят о том, что на самом деле центральная черная дыра и идущее вокруг нее звездообразование связаны между собой эволюционными процессами, которые формируют развитие галактик.
Те процессы, которые делают центральную черную дыру в галактике все более и более массивной, могут вызывать также и формирование звезд. Фаза звездообразования может быть общей ступенью равития для Сейфертовских галактик и квазаров - двух типов самых ярких объектов, наблюдаемых во Вселенной.
Сейфертовские галактики содержат активные сверхмассивные черные дыры в центральных районах, размеры которых сравнимы с размерами нашей Солнечной системы. Так как черная дыра поглащает близлежащие звезды и газ, она излучает огромные количества энергии. Это и служит причиной характерного для Сейфертовских галактик спектра с чрезвычайно высоким рентгеновским излучением, идущим из небольших центральных районов или ядра. Но есть Сейфертовские галактики, центральные области которых излучают несколько слабее - это так называемые Сейфертовские галактики 2 типа. Сначала теоретики считали, что такое различие в излучении связано с пространственным расположением галактики по отношению к Земле. Вокруг ядра любой спиральной галактики (а Сейфертовские галактики - это, как правило, спиральные галактики) существует диск, состоящий из газа и пыли. Предполагалось, что в зависимости от ориентации плоскости галактики центральная часть может быть видна сквозь затеняющий пылевой диск. Однако исследовав 14 Сейфертовских галактик на основе новых и архивных данных, полученных с помощью двух космических рентгеновских обсерваторий, астрономы пришли к выводу, что причиной затенения центральных районов галактик могут быть области, в которых идет процесс формирования звезд.
Анализируя рентгеновское излучение исследуемых галактик, астрономы выяснили, что эти галакти обладают и сверхмассивными черными дырами, и областями активного звездообразования. Такая взаимосвязь предполагает возникновение новых теорий относительно эволюции галактик. Должен быть какой-то механизм, который снабжает районы звездообразования материалом и увеличивает вероятность того, что в этих районах накопится газ и начнется процесс формирования звезд. Как считают исследователи, в Сейфертовских галактиках эти функции может выполнять гравитация центральной черной дыры.
Если бы мы могли видеть в рентгене, то, посмотрев в мае 2000 года на южное небо, мы увидели бы очень яркий источник, но это было бы не Солнце или Луна, а экзотическая черная дыра двойной звездной системы, известной астрономам как XTE J1550-564.
В апреле 2000 года этот объект был почти так же ярок, как Крабовидная туманность, которая является самым ярким рентгеновским источником нашего неба," - говорит доктор Mike McCollough из NASA. "С тех пор яркость этого объекта уменьшилась приблизительно до десятой части яркости Краба."
Сейчас XTE J1550-564 - один из самых ярких рентгеновских источников. Если бы человеческий глаз был чувствителен к рентгеновскому излучению, мы могли бы наблюдать его сияющим в южном созвездии Наугольник.
Обычно J1550-564 почти не видим в рентгене, но его интенсивность меняется. Например, в 1998 году этот объект был в 1.5 раза ярче Крабовидной туманности в течение нескольких дней.
McCollought и его коллеги полагают, что XTE J1550 является черной дырой со звездой - компаньоном. Газообразный материал, перетекающей от звезды к черной дыре, формирует закручивающийся диск, вещество которого разогревается. Этот диск, называемый аккреционным диском, становится таким горячим и пылает так ярко в рентгеновских длинах волн, что становится видимым для рентгеновских телескопов на расстояниях в 10 000 световых лет.
"Если бы мы преобразовали рентгеновские колебания от J1550 в звуковые волны, мы услышали бы низкий, грохочащий гул," - говорит доктор Stefan Dieters, астроном из NASA. "Доминирующая составляющая частоты - около 0,3 Hz - слишком низка для человеческого уха, но полный спектр содержит частоты до 20 или 30 Hz, которые лежат в нижних пределах человеческого слуха."
"Звук" от такой двойной системы с черной дырой не был бы чистым тоном, так как спектр колебаний содержит целый диапазон частот. Ученые называют это квази-периодическими колебаниями (Quasi Periodic Oscillations - QPO). Какова причина этих колебаний в таких системах?
"Возможно, аккреционный диск, который вызывает рентгеновское излучение, вибрирует," - говорит McCollough. "Или квази-периодические колебания могут быть частотой биения между периодом вращения центрального объекта и орбитальным периодом внутреннего края диска. Пока мы этого не знаем."
Существует несколько теоретических моделей, объясняющих это явление, но основная идея состоит в том, что некоторая граница в аккреционном диске перемещается внутрь, к черной дыре. Это может быть внутренняя граница диска, или, возможно, область перехода между двумя частями диска. Независимо от того, что это, оно зарождается вне диска, где орбитальный период более длинный, и перемещается в область более быстрого вращения, вызывая колебания с более высокой частотой.
Список двойных систем с QPO, содержащих черные дыры, все время растет. Сейчас известно по крайней мере 10 таких систем. Но не все источники вибрируют в низких частотах. Частоты систем с QPO с черными дырами могут доходить до 250 Hz, а квази-периодические колебания двойных систем с нейтронными звездами могут иметь компоненты частоты до 1.25 KHz.
"Когда мы исследуем эти быстрые колебания в системах черных дыр, мы действительно чувствуем, что происходит во внутреннем аккреционном диске, около роковой черты," - говорит McCollough. "Это поражает воображение. Мы находимся рядом с областью, где, как известно, пространство и время уже не существуют."
Звезда - Черная дыра
Если масса звезды в два раза превышает солнечную, то к концу своей жизни звезда может взорваться как сверхновая, но если масса вещества оставшегося после взрыва, всё ещё превосходит две солнечные, то звезда должна сжаться в крошечное плотное тело, так как гравитационные силы всецело подавляют всякое внутреннее сопротивление сжатию. Учёные полагают, что именно в этот момент катастрофический гравитационный коллапс приводит к возникновению чёрной дыры. Они считают, что с окончанием термоядерных реакций звезда уже не может находиться в устойчивом состоянии. Тогда для массивной звезды остаётся один неизбежный путь - путь всеобщего и полного сжатия (коллапса), превращающего её в невидимую чёрную дыру.
В 1939г. Р. Оппенгеймер и его аспирант Снайдер в Калифорнийском университете (Беркли) занимались выяснением окончательной судьбы большой массы холодного вещества. Одним из наиболее впечатляющих следствий общей теории относительности Эйнштейна оказалось следующее: когда большая масса начинает коллапсировать, этот процесс не может быть остановлен и масса сжимается в чёрную дыру. Если, например, невращающаяся симметричная звезда начинает сжиматься до критического размера, известного как гравитационный радиус, или радиус Шварцшильда (назван так в честь Карла Шварцшильда, которой первым указал на его существование). Если звезда достигает этого радиуса, то уже не что не может воспрепятствовать ей завершить коллапс, то есть буквально замкнуться в себе. Чему же равен гравитационный радиус ? Строгое математическое уравнение показывает, что для тела с массой Солнца гравитационный радиус равен почти 3 км, тогда как для системы, включающей миллиард звёзд, - галактики - этот радиус оказывается равным расстоянию от Солнца до орбиты планеты Уран, то есть составляет около 3 млрд. км.
Каковы же физические свойства "чёрных дыр" и как учёные предполагают обнаружить эти объекты ? Многие учёные раздумывали над этими вопросами; получены кое-какие ответы, которые способны помочь в поисках таких объектов.
Само название - чёрные дыры - говорит о том, что это класс объектов, которые нельзя увидеть. Их гравитационное поле настолько сильно, что если бы каким-то путём удалось оказаться вблизи чёрной дыры и направить в сторону от её поверхности луч самого мощного прожектора, то увидеть этот прожектор было бы нельзя даже с расстояния, не превышающего расстояние от Земли до Солнца. Действительно, даже если бы мы смогли сконцентрировать весь свет Солнца в этом мощном прожекторе, мы не увидели бы его, так как свет не смог бы преодолеть воздействие на него гравитационного поля чёрной дыры и покинуть её поверхность. Именно поэтому такая поверхность называется абсолютным горизонтом событий. Она представляет собой границу чёрной дыры.
Учёные отмечают, что эти необычные объекты нелегко понять, оставаясь в рамках законов тяготения Ньютона. Вблизи поверхности чёрной дыры гравитация столь сильна, что привычные ньютоновские законы перестают здесь действовать. Их следует заменить законами общей теории относительности Эйнштейна. Согласно одному из трёх следствий теории Эйнштейна, покидая массивное тело, свет должен испытывать красное смещение, так как он должен испытывать красное смещение, так как он теряет энергию на преодоление гравитационного поля звезды. Излучение, приходящее от плотной звезды, подобной белому карлику - спутнику Сириуса А, - лишь слегка смещается в красную область спектра. Чем плотнее звезда, тем больше это смещение, так что от сверхплотной звезды совсем не будет приходить излучения в видимой области спектра. Но если гравитационное действие звезды увеличивается в результате её сжатия, то силы тяготения оказываются настолько велики, что свет вообще не может покинуть звезду. Таким образом, для любого наблюдателя возможность увидеть чёрную дыру полностью исключена ! Но тогда естественно возникает вопрос: если она невидима, то как же мы можем её обнаружить ? Чтобы ответить на этот вопрос, учёные прибегают к искусным уловкам. Руффини и Уиллер досконально изучили эту проблему и предложили несколько способов пусть не увидеть, но хотя бы обнаружить чёрную дыру. Начнём с того, что, когда чёрная дыра рождается в процессе гравитационного коллапса, она должна излучать гравитационные волны, которые могли бы пересекать пространство со скоростью света и на короткое время искажать геометрию пространства вблизи Земли. Это искажение проявилось бы в виде гравитационных волн, действующих одновременно на одинаковые инструменты, установленные на земной поверхности на значительных расстояниях друг от друга. Гравитационное излучение могло бы приходить от звёзд, испытывающих гравитационный коллапс. Если в течение обычной жизни звезда вращалась, то, сжимаясь и становясь всё меньше и меньше, она будет вращаться всё быстрее сохраняя свой момент количества движения. Наконец она может достигнуть такой стадии, когда скорость движения на её экваторе приблизится к скорости света, то есть к предельно возможной скорости. В этом случае звезда оказалась бы сильно деформированной и могла бы выбросить часть вещества. При такой деформации энергия могла бы уходить от звезды в виде гравитационных волн с частотой порядка тысячи колебаний в секунду (1000 Гц).
Дж. Вебер установил ловушки гравитационных волн в Аргоннской национальной лаборатории вблизи Чикаго и в Мэрилендском университете. Они состояли из массивных алюминиевых цилиндров, которые должны были колебаться, когда гравитационные волны достигнут Земли. Используемые Вебером детекторы гравитационного излучения реагируют на высокие (1660 Гц), так и на очень низкие (1 колебание в час) частоты. Для детектирования последней частоты используется чувствительный гравиметр, а детектором является сама Земля. Собственная частота квадрупольных колебаний Земли равна одному колебанию за 54 мин.
Все эти устройства должны были срабатывать одновременно в момент, когда гравитационные волны достигнут Земли. Действительно они срабатывали одновременно. Но к сожалению, ловушки включались слишком часто - примерно раз в месяц, что выглядело весьма странно. Некоторые учёные считают, что хотя опыты Вебера и полученные им результаты интересны, но они недостаточно надёжны. По этой причине многие относятся весьма скептически к идее детектирования гравитационных волн (эксперименты по детектированию гравитационных волн, аналогичные опытам Вебера, позднее были проверены в ряде других лабораторий и не подтвердили результатов Вебера. В настоящее время считается, что опыты Вебера ошибочны).
Роджер Пенроуз, профессор математики Биркбекского колледжа Лондонского университета, рассмотрел любопытный случай коллапса и образования чёрной дыры. Он также допускает, что чёрная дыра исчезает, а затем проявляется в другое время в какой-то иной вселенной. Кроме того, он утверждает, что рождение чёрной дыры во время гравитационного коллапса является важным указанием на то, что с геометрией пространства-времени происходит нечто необычное. Исследования Пенроуза показывают, что коллапс заканчивается образованием сингулярности, то есть он должен продолжаться до нулевых размеров и бесконечной плотности объекта. Последние условие даёт возможность другой вселенной приблизиться к нашей сингулярности, и не исключено, что сингулярность перейдёт в эту новую вселенную. Она даже может появиться в каком-либо другом месте нашей собственной Вселенной.
Некоторые учёные рассматривают образование чёрной дыры как маленькую модель того, что, согласно предсказаниям общей теории относительности, в конечном счёте может случиться со Вселенной. Общепризнано, что мы живём в неизменно расширяющейся Вселенной, и один из наиболее важных и насущных вопросов науки касается природы Вселенной, её прошлого и будущего. Без сомнения, все современные результаты наблюдений указывают на расширение Вселенной. однако на сегодня один из самых каверзных вопросов таков: замедляется ли скорость этого расширения, и если да, то не сожмётся ли Вселенная через десятки миллиардов лет, образуя сингулярность. По-видимому, когда-нибудь мы сможем выяснить, по какому пути следует Вселенная, но, быть может, много раньше, изучая информацию, которая просачивается при рождении чёрных дыр, и те физические законы, которые управляют их судьбой, мы сможем предсказать окончательную судьбу Вселенной.
Почти всю свою жизнь звезда сохраняет температуру и размер практически постоянными. Значение главной последовательности заключается в том, что большинство обычных звёзд оказываются нормальными, то есть лишёнными каких-либо особенностей. Мы вправе ожидать, что эти звёзды подчиняются определённым зависимостям, подобным, например, упомянутой главной последовательности. Большинство звёзд оказываются на этой наклонной линии - главной последовательности, потому, что звезда может прийти на эту линию всего лишь за несколько сотен тысяч лет, а покинув её, прожить ещё несколько сотен миллионов лет, большинство звёзд заведомо остаётся на главной последовательности в течение миллиардов лет. Рождение и смерть - ничтожно малые мгновенья в жизни звезды. Наше Солнце, являющееся обычной звездой, находится на этой последовательности уже в течение 5-6 млрд. лет и, по-видимому, проведёт на ней ещё столько же времени, так как звёзды с такой массой и таким химическим составом, как у Солнца, живут 10-12 млрд. лет. Звёзды много меньшей массы находятся на главной последовательности примерно 50 млрд. лет. Если же масса звезды в 30 раз превосходит солнечную, то время её пребывания на главной последовательности составит всего около 1 млн. лет.
Вернёмся к рассмотрению процессов, происходящих при рождении звезды: она продолжает сжиматься, сжатие сопровождается возрастанием температуры. Температура ползёт вверх, и вот огромный газовый шар начинает светиться, его уже можно наблюдать на фоне тёмного ночного неба как тусклый красноватый диск. Значительная доля энергии его излучения по-прежнему приходится на инфракрасную область спектра. Но это ещё не звезда. По мере того как вещество протозвезды уплотняется, оно всё быстрее падает к центру, разогревая ядро звезды до всё более высоких температур. Наконец температура достигает 10 млн. К, и тогда начинают протекать термоядерные реакции - источник энергии всех звёзд во Вселенной. Как только термоядерные процессы включаются в действие, космическое тело превращается в полноценную звезду.
Сжимаясь, пыль и газ образуют протозвезду ; её вещество представляет собой типичный образец вещества окружающей нас части космического пространства. Говоря об образце вещества Вселенной, мы подразумеваем, что этот кусочек межзвёзной среды на 89% состоит из водорода, на 10%-из гелия; такие элементы, как кислород, азот, углерод, неон и т. п. составляют в нём менее 1%, а все металлы, вместе взятые, - не более 0,25%. Таким образом, звезда в основном состоит из тех элементов, которые чаще всего встречаются во Вселенной. И поскольку богаче всего во Вселенной представлен водород, то, конечно, любые термоядерные реакции должны протекать с его участием.
Кое-где встречаются уголки космического пространства с повышенным содержанием тяжёлых элементов, но это лишь местные аномалии - остатки давних звёздных взрывов, разбросавших и рассеявших в окрестности тяжёлые элементы. Мы не будем останавливаться на таких аномальных областях с повышенной концентрацией тяжёлых элементов, а сосредоточим внимание на звёздах, состоящих в основном из водорода.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--