Курсовая работа: Численное интегрирование функции методом Гаусса

a, b - пределы интегрирования;

f - интегрируемая функция;

gc- посчитанный интеграл на интервале (a, b);

ga, gb- переменные для подсчета интеграла на половине интервала;

eps - точность интегрирования;

k - вспомогательная переменная.


Рисунок 1 - Функциональная модель решения задачи десятиточечного метода Гаусса, реализованная методом Gaus_Calc

Рисунок 2 - Функциональная модель решения задачи для функции Gaus

4. Программная реализация решения задачи

;; интегрируемая функция

( defun F (x)

;; 1 пример

;; (/ (* 2 (expt x 3)) (expt x 4))

;; 2 пример

;; (* 3.142 (sin (* 3.142 x)))

;; 3 пример

( * (/ (log (+ x 1)) x) (exp (* - 1 x)))

)

;; десятиточечный метод Гаусса

( defun Gauss_Calc (a b f)

(setq g10c1 (/ 0.9739065285 6.2012983932))

(setq g10c2 (/ 0.8650633667 6.2012983932))

(setq g10c3 (/ 0.6794095683 6.2012983932))

(setq g10c4 (/ 0.4333953941 6.2012983932))

(setq g10c5 (/ 0.1488743390 6.2012983932))

(setq g10x1 (/ 0.0666713443 6.2012983932))

(setq g10x2 (/ 0.1494513492 6.2012983932))

(setq g10x3 (/ 0.2190863625 6.2012983932))

(setq g10x4 (/ 0.2692667193 6.2012983932))

К-во Просмотров: 373
Бесплатно скачать Курсовая работа: Численное интегрирование функции методом Гаусса