Курсовая работа: Численное интегрирование методом Гаусса
, (1.2)
... ... .
.
Система (1.2) нелинейная, и ее решение найти довольно трудно. Рассмотрим еще один прием нахожденияи . Свойства полиномов Лежандра
,
таковы:
1) , ;
2) ;
3) полином Лежандра имеет различных и действительных корней, расположенных на интервале .
Составим по узлам интегрирования многочлен -й степени
.
Функция при есть многочлен степени не выше . Значит для этой функции формула Гаусса справедлива:
, (4.3)
так как .
Разложим в ряд по ортогональным многочленам Лежандра:
,
,
,
т.е. все коэффициенты при . Значит с точностью до численного множителя совпадает с . Таким образом, узлами формулы Гаусса являются нули многочлена Лежандра степени .
Зная , из линейной теперь системы первых (4.2) легко найти коэффициенты . Определитель этой системы есть определитель Вандермонда.
Формулу , в которой - нули полинома Лежандра , а определяют из (3.3), называют квадратурной формулой Гаусса.
Таким образом, алгоритм решения нашей задачи будет таким:
Ввод данных – пределы интегрирования, количество узлов, точность и подынтегральная функция
Подпрограмма вычисления интеграла с заданной точностью, которая использует подпрограмму вычисления функции десятиточечным методом
Подпрограмма графического отображения результатов вычислений по данному методу.
3.2 Разработка программы по схеме алгоритма
В основной программе необходимо предусмотреть ввод необходимых данных и реализацию контрольно примера, а также удобное управление элементами программы и команду выхода.
Подпрограммы реализованы в виде функций. Существует главная функция, которая вызывается из основной программы и которая выполняет основные действия (подсчет значения интеграла и вывод на экран результата, вывод графика на экран), вызывая другие подпрограммы.
Главная функция вызывает функцию подсчета интеграла с заданной точностью вычислений, которая в свою очередь на каждом шаге вызывает функцию подсчета значения функции.
3.3 Разработка инструкции пользования программой
Программный комплекс имеет интуитивно понятный интерфейс. Вначале программы на экран выводится меню, где можно выбрать несколько дальнейших действий, а именно: решение контрольного примера, произвольный ввод данных или выход из программы.