Курсовая работа: Численные методы при решении задач
f (&y0[(i+1)*n], &q0[(i+1)*n], xi); // qi = f (xi, yi);
for (j = 0; j < n; j++) q0[((i+1)*n)+j] *= h;
xi += h; // Следующий шаг }
///////////////////////////////////////////////////////////////////////
// - Метод Адамса - //
///////////////////////////////////////////////////////////////////////
// Итак, вычислены 4 первых значения. Этого достаточно для начала метода
// Адамса для шага h.
// B y0...y3 лежат 4 значения функций (_НЕ_ПРОИЗВОДНЫХ!!!).
// A в q0...q3 лежат значения _производных_ этих функций, умноженных на h
// q0..q3, а также y0..y3 представляют собой очереди с 4 элементами
again: // Вычисляем новое значение функции Yi (Это Y[i+1])
for (j = 0; j < n; j++)
{ // Все приращения
dq2 = q3[j] - q2[j]; dq1 = q2[j] - q1[j]; dq0 = q1[j] - q0[j];
d2q1 = dq2 - dq1; d2q0 = dq1 - dq0;
d3q0 = d2q1 - d2q0;
// новое значение функции (в ya пока что)
ya[j] = y3[j] + (q3[j] + (dq2 / 2.) + (5. * d2q1 / 12.) + (3. * d3q0 / 8.));
// Сдвигаем все массивы на 1 вперёд и добавляем в очередь новое
// значение функции
y0[j] = y1[j]; y1[j] = y2[j]; y2[j] = y3[j]; y3[j] = ya[j];
// Просто сдвигаем q, ничего пока что не добавляя
q0[j] = q1[j]; q1[j] = q2[j]; q2[j] = q3[j];
}
// В очередь в качестве q3 ложим новое значение
f (y3, q3, xi); // q3 = f (xi, y3);
for (j = 0; j < n; j++) q3[j] *= h; // Вычислить q3
// Очередное значение функции вычислено. Следующиий шаг