Курсовая работа: Дефекти в металах і сплавах

В процесі нормального коливання всі частинки кристала коливаються біля своїх положень рівноваги з однією і тією ж постійною частотою згідно із законом подібно до простого гармонійного осцилятора. У кристалі одночасно можуть бути присутніми всі можливі нормальні коливання, причому кожне протікає так, ніби інші зовсім відсутні. Будь-який рух атомів в кристалі, що не порушує його мікроструктури, може бути представлений у вигляді суперпозиції нормальних коливань кристала.

Кожну стоячу хвилю нормального коливання можна, у свою чергу, представити у вигляді двох пружних плоских хвиль, що біжать, розповсюджуючись в протилежних напрямах (нормальні хвилі). Плоска хвиля, що біжить, крім частоти характеризується хвилевим вектором , який визначає напрям руху фронту хвилі і довжину хвилі , а також поляризацією, яка визначає характер індивідуального руху частинок. У загальному випадку має місце еліптична поляризація, коли кожен атом описує еліпс біля свого положення рівноваги (рис. 2 ), при цьому нормаль до площини еліпса не співпадає по напряму з .

Еліптичні орбіти однакові для ідентичних атомів, що займають еквівалентні положення в решітці. У тих кристалах, де кожен вузол є центром симетрії, всі нормальні хвилі плоскополяризовані: атоми в будь-якому нормальному коливанні здійснюють зворотно-поступальні рухи біля своїх положень рівноваги.

Дисперсія нормальних хвиль. При кожному значенні існує 3n типів нормальних хвиль з різною поляризацією. Вони нумеруються цілочисельною змінною і називаються гілками нормальних коливань. Для хвиль даного типу величини і не можуть бути довільними, а зв'язані між собою певним співвідношенням , називається законом дисперсії. Наприклад, якщо представити кристал у вигляді сукупності однакових атомів маси т, розташованих на рівних відстанях а один від одного і зв'язаних попарно пружинами з жорсткістю так, що вони утворюють нескінченний ланцюжок і можуть зміщуватися тільки уздовж її осі (рис. 3 , а), то елементарна комірка складається з однієї частинки і існує одна гілка частоти нормальних коливань із законом дисперсії:

.

У двоатомного лінійного ланцюжка (рис. 3 , б) комірка містить 2 частинки з масами т і М і є 2 галузь з складнішим законом дисперсії (рис. 4 ):

, , (M > m ).

Пружні хвилі в кристалі завжди володіють дисперсією. Зокрема, їх фазова швидкість, як правило, відрізняється від групової, з якою по кристалу переноситься енергія коливань. Тоді як частота пружних хвиль, що розповсюджуються в безперервному середовищі, необмежено зростає із зростанням, в кристалі завдяки періодичному розташуванню атомів і кінцевій величині сил, що зв'язують їх, існує деяка максимальна частота коливань (зазвичай ~1013 гц ). Власні частоти можуть не суцільно заповнювати інтервал від до, в нім можуть бути порожні ділянки (заборонені зони), що розділяють дві наступні один за одним галузь. Забороненої зони між сусідніми гілками немає, якщо гілки перекриваються. Коливання, відповідні забороненим зонам і з частотою , не можуть поширюватися в кристалі, вони швидко затухають.

Вплив коливань кристалічної решітки на властивості кристалів. Атоми осцилюють біля положення рівноваги тим інтенсивніше, чим вище температура кристала. Коли амплітуда коливань перевищує деяке критичне значення, настає плавлення і кристалічна структура руйнується. З пониженням температури амплітуда зменшується і стає мінімальною при Т = 0 К. Повна зупинка атомів з перетворенням їх енергії на нуль, через закони, неможлива, і вони при Т = 0 До здійснюють «нульові» коливання. Оскільки енергія «нульових» коливань зазвичай недостатня, щоб тверде тіло розплавилося, то із зниженням температури всі рідини рано чи пізно тверднуть. Єдиним виключенням є гелій, який залишається рідким аж до температури 0 К і твердне лише під тиском.

Кількісною характеристикою здатності кристала запасати тепло у вигляді енергії коливань служить гратчаста теплоємність. Будучи віднесеною до одного атома, вона виявляється приблизно рівною ( стала Больцмана) при високих температурах (закон Дюлонга і Пті) і пропорційною , коли Т наближається до 0 К.

У металах крім атомів або іонів, є також вільні електрони, які у присутності електричного поля створюють електричний струм. Закони їх руху такі, що вони безперешкодно проходять крізь ідеальний кристал з іонів, що знаходяться в стані «нульових» коливань. Тому опір електричному струму при Т =0 К виникає лише тому, оскільки в кристалах завжди є дефекти, які розсіюють електрони. Проте при температурах Т > 0 К коливання хаотично порушують ідеальну періодичність решітки і створюють додатковий — гратчастий, або фононний, електроопір. Стикаючись з осцилюючими атомами, електрони передають кристалічному остову частину енергії своєї направленої поступальної ходи, яка виділяється у вигляді джоулевої теплоти.

Ангармонізм.Насправді сили, які повертають не строго пропорційні зсувам атомів з положення рівноваги і коливання кристала не є строго гармонійними (ангармонізм). Нелінійність міжатомних сил мала, оскільки малі амплітуди коливань. Проте завдяки їй окремі нормальні коливання не є незалежними, а виявляються пов'язаними один з одним і між ними можливий резонанс, як в системі зв'язаних маятників.

В процесі встановлення термодинамічної рівноваги в кристалах ангармонізм грає ту ж роль, що і зіткнення частинок в газі. Він, зокрема, пояснює теплове розширення кристалів, відхилення від закону Дюлонга і Пті закону в області високих температур, а також відмінність одна від одної ізотермічних і адіабатичних пружних сталих твердого тіла і їх залежність від температури і тиску.

При нерівномірному нагріванні твердого тіла в ньому виникають потоки тепла. У металахвелика частина його переноситься електронами, а у діелектриках нормальними хвилями (фононами). Тому у відсутності ангармонізму тепловий потік поширювався б із швидкістю нормальних хвиль, тобто приблизно із швидкістю звуку. Завдяки ангармонізму хвилі в тепловому потоці обмінюються енергією і інтерферують одна з одною. В процесі такої інтерференції відбувається втрата сумарного імпульсу теплового потоку. В результаті виникає теплоопір, а теплова енергія переноситься з дифузійною швидкістю, набагато меншою швидкості поширенні пружної енергії, наприклад звукової хвилі. Ангармонізм є також однією з причин затухання в кристалах.

Локальні і квазілокальні коливання. На характер коливань кристалічної решітки істотно впливають дефекти кристалічної решітки. Жорсткість міжатомних зв'язків і маси частинок в області дефекту відрізняються від таких для ідеального кристала, називаються еталонним або матрицею. В результаті цього нормальні хвилі не є плоскими. Наприклад, якщо дефект — це домішковий атом маси , пов'язаний з сусідами пружинами жорсткості , то може трапитися, що його власна частота коливань потрапить в заборонену область частот матриці. У такому коливанні бере активну участь лише домішковий атом, тому воно і називається локальним. Оскільки в реальному кристалі дефектів завжди багато, то локальне коливання, будучи збудженим на одному дефекті, може перейти на іншій, як при резонансі однакових слабо зв'язаних маятників. Тому локальні коливання володіють цілим спектром частот, які утворюють домішкову зону частот коливань кристалічної решітки.

Разом з локальними коливаннями в області низьких частот можуть існувати так звані квазілокальні коливання. Зокрема, такі коливання є в кристалі з важкими домішковими атомами. Квазілокальні коливання при низьких температурах різко збільшують гратчасту теплоємність, коефіцієнт термічного розширення, тепло- і електроопір. Так, наприклад, 2—3% домішкових атомів, в 10 разів важчих, ніж атоми матриці, здатні при малих Т подвоїти гратчасту теплоємність і коефіцієнт термічного розширення.

Локальні коливання протяжних дефектів, наприклад, поширюються уздовж них у вигляді хвиль, але в матрицю, як і у разі точкових дефектів, не проникають. Частоти цих коливань можуть належати як забороненій, так і дозволеній області частот матриці, відрізняючись від них законом дисперсії. Такі, наприклад, звукові поверхневі хвилі, що виникають у плоскій межі твердого тіла (хвилі Релея).

Експериментальні методи вивчення коливань кристалічної решітки різноманітні. Одним з методів вивчення локальних і квазілокальних коливань кристалічної решітки служить їх збудження за допомогою інфрачервоного випромінювання. Воно супроводжується резонансним зменшенням прозорості кристала і дозволяє не тільки виявити ці коливання, але і визначити їх частоти.

Дослідження непружного розсіяння нейтронів в кристалах дозволяють визначити закон дисперсії і поляризацію нормальних коливань. Закон дисперсії може бути також відновлений за допомогою дифузного розсіяння рентгенівських променів. Ефект Мессбауєра дозволяє безпосередньо визначити середньоквадратичні зсуви і імпульси атомів в процесі коливань кристалічної решітки.

Дефекти у кристалах утворюються в процесі їх зростання, під впливом теплових, механічних і електричних дій, а також при опромінюванні нейтронами, електронами, рентгенівськими променями, ультрафіолетовим випромінюванням (радіаційні дефекти) і т.п.

3. Виникнення дефектів. Кристалізація

Кристалізація – утворення кристалів з пари, розчинів, розплавів, речовини в твердому стані (аморфному або іншому кристалічному), в процесі електролізу і при хімічних реакціях. Кристалізація приводить до утворення мінералів. Кристалізація води грає важливу роль в атмосферних і ґрунтових явищах. Кристалізація лежить в основі металургії, отриманні напівпровідникових, оптичних, п'єзоелектричних і ін. матеріалів, плівок для мікроелектроніки, металевих покриттів, широко використовується в хімічній, харчовій, медичній промисловості (очищення речовин, виробництво добрив, солей, цукру, хімікатів, ліків).

Умови кристалізації. Якщокристал не плавиться, не розчиняється, не випаровується і не росте, то він знаходиться в термодинамічній рівновазі з матковим середовищем (розплавом, розчином або парою). Рівновага кристала з розплавом тієї ж речовини можливо лише при температурі плавлення Тпл, а рівновага з розчином і парою — якщо останні насичені. Пересичення або переохолодження середовища — необхідна умова для зростання зануреного в неї кристала, причому швидкість росту кристала тим більше, чим більша відхилення від рівноваги.

Кристалізація — фазовий перехід речовини із стану переохолодженого (пересиченою) маткового середовища в кристалічне з'єднання з меншою енергією. Надмірна енергія виділяється при кристалізації у вигляді прихованої теплоти кристалізації. Частина цієї теплоти може перетворюватися на механічну роботу; наприклад, кристал, що росте, може піднімати покладений на нього вантаж, розвиваючи кристалізаційний тиск близько десятків кГ/см2. Зокрема, кристали солей, що утворюються в порах бетонних дамб в морській воді, можуть викликати руйнування бетону.

Виділення прихованої теплоти кристалізації веде до нагрівання розплаву, зменшення переохолодження і уповільнення кристалізації, яка закінчується вичерпанням речовини або досягненням рівноважних значень температури, концентрації і тиску.

Зародки кристалізації. Переохолодженесередовище може довго зберігати, не кристалізуючись, нестійкий метастабільний стан (наприклад, дрібні, діаметром 0,1 мм краплі добре очищених металів можна переохолоджувати до температури ~ 0,8 Тпл ). Проте досягши деякого граничного для даних умов критичного переохолодження в рідині або парі майже миттєво виникає безліч дрібних кристалів (зародків). Відбувається спонтанна кристалізація. Кристали, що виникли ростуть, оскільки переохолодження зменшується, нові зародки, як правило, більше не виникають. Критичне переохолодження залежить від температури, концентрації, складу середовища, її об'єму, від присутності сторонніх частинок (наприклад, порошинок, на яких утворюються зародки, кристалів ін. речовин і т. п.), від матеріалу і стану поверхні стінок судини, від інтенсивності перемішування, дії випромінювань і ультразвуку.

При зародженні атоми або молекули речовини, що кристалізується, об'єднуються в кристалічні агрегати. Об'єднання частинок в агрегат зменшує вільну енергію системи, а поява нової поверхні — збільшує. Чим менший агрегат, тим більша частка його частинок лежить на поверхні, тим більша роль поверхневої енергії. Тому із збільшенням розміру r агрегату робота А , потрібна для його утворення, спочатку збільшується, а потім падає (рис. 5 ).

Агрегат, для якого робота утворення максимальна, називається критичним зародком (rкр ). Чим менша робота утворення зародка, тим вірогідніша його поява. З цим переважно пов’язане зародження на сторонніх частинках (особливо заряджених), на поверхнях твердих тіл і на їх дефектах. Таке зародження називається гетерогенним. При кристалізації на поверхні твердого тіла зародження відбувається переважно на неоднорідностях поверхні. При цьому кристали «декорують» дефекти і неоднорідності. Гомогенне зародження в об'ємі чистої рідини можливо лише при дуже глибоких переохолодженнях. Зі зниженням температури і із зростанням переохолодження зменшується робота утворення зародка, але одночасно падає і в'язкість рідини, а з нею і частота приєднання нових частинок до кристалічних агрегатів. Тому залежність швидкості зародження від температури має максимум

При низьких температурах рухливість частинок рідини настільки мала, що розплав твердне, залишаючись аморфним, — виникає скло.

К-во Просмотров: 295
Бесплатно скачать Курсовая работа: Дефекти в металах і сплавах