Курсовая работа: Двумерная кластеризая по предельному расстоянию. Дискретная математика

Шаг 2а. Если расстояние между двумя точками s > d , то в матрицу заносится 0, иначе 1.

Шаг 2б. Повторение шага 2 8 раз. Полученная в результате матрица смежности представлена на рисунке 6.


Рисунок 6 – Тест первый (часть 2)

Шаг 3. Составляем матрицу дерева ТТ .

Шаг 3а. Первоначально в матрице на главной диагонали все нули, значит

tt 11 = tt 22 = ... = tt 88 = 0, k = 1;

Шаг 3б. Находим минимальный элемент матрицы Т - t 12 = 0,5. Включаем данное ребро в матрицу ТТ и увеличиваем значение счётчика k = k + 1 = 2;

Шаг 3г. Находим следующий минимальный элемент и повторяем все действия из шага 3б. Таким образом перебираем всю матрицу.

Шаг 4. На главной диагонали матрицы ТТ находятся все 1. Полученная матрица представлена на рисунке 7.

Рисунок 7 – Тест первый (часть 3)


4.1 Тест второй.

Результат выполнения алгоритма с 20-ю вершинами, заданными случайными координатами и предельным расстоянием равным 2,5 представлен на рисунке 8.

Рисунок 8 – Тест второй (часть 1)

На данном рисунке видно, что граф был разбит на 8 кластеров. Увеличим предельное расстояние до 3. Из рисунка 9 видно, что количество кластеров сократилось до 4.

Рисунок 9 – Тест первый (часть 2)


Продолжая постепенно увеличивать предельное расстояние, увидим, что в итоге граф будет представлять собой один кластер. Минимальное остовное дерево этого кластера представлено на рисунке 10.

Рисунок 10 – Тест первый (часть 3)

Из этого теста видно, что с увеличением предельного расстояния количество кластеров уменьшается. Минимальное остовное дерево строится верно. Значит, в данном тесте программа работает верно.

4.3 Тест третий

Составим граф из 7 вершин, координаты которых и предельное расстояние представлены на рисунке 11.


Рисунок 11 – Тест второй (часть 1)

Построим данный граф. Остовное дерево данного графа, а так же матрицы смежности, расстояний и остовного дерева представлены на рисунке 12.

К-во Просмотров: 148
Бесплатно скачать Курсовая работа: Двумерная кластеризая по предельному расстоянию. Дискретная математика