Курсовая работа: Эффект магнитоимпеданса
Рис. 5 Зависимость величины ГМИ-эффекта в фольгах Vitrovac 6025Z от величины упругих растягивающих напряжений при различных температурах на частоте переменного тока 10 МГц. Упругие растягивающие напряжения приложены вдоль длины образца.
1.2.2 Температурная зависимость магнитного импеданса
Известно, что магнитные свойства ферромагнетиков зависят от температуры, следовательно, величина эффекта ГМИ также должна зависеть от температуры.
Были исследованы температурные зависимости магнитных свойств и фазовые переходы в аморфных лентах состава Fe4 Co67 Mo1,5 Si16,5 B11 (Vitrovac 6025) [12]. Исследовались образцы в аморфном состоянии и отожженные до нанокристаллического состояния. Измерения проводились в диапазоне температур от 30К до температур порядка 1000К. Большой интерес представляют представленные в данной работе температурные зависимости магнитной проницаемости (рис. 5) и намагниченности (рис. 6). На основе данных зависимостей можно сделать вывод о поведении магнитоимпеданса при различных температурах. Из анализа зависимостей магнитной проницаемости и намагниченности следует, что температура Кюри данного сплава для аморфного состояния составляет 502К, для нанокристаллического – 515К. Можно предположить, что при приближении к температуре Кюри будет наблюдаться падение импеданса до некоторого минимального значения. При температурах, выше температуры Кюри зависимость импеданса от внешнего магнитного поля и от механических напряжений, вероятно, наблюдаться не будет. Появление намагниченности в интервале температур от 820К до 1000К связано с выделением кристаллической ферромагнитной фазы.
Рис. 5 Температурная зависимость магнитной проницаемости для лент Vitrovac 6025Z в нанокристаллическом (nanostructured) и аморфном (as received) состояниях.
Рис.6. Температурная зависимость намагниченности лент Vitrovac 6025 в аморфном (as received) и нанокристаллическом (nanostructured) состояниях.
В работе [9] был установлен характер поведения начального импеданса Z0 и и максимального импеданса Zm при изменении температуры в отсутствие внешних упругих растягивающих напряжений для различных частот переменного тока. (рис. 7.) Во всем частотном диапазоне при увеличении температуры от 20ºС до 190ºС величина начального импеданса Z0 возрастает. С дальнейшим ростом температуры магнитный импеданс образцов уменьшается. Температурное поведение максимального значения импеданса Zm зависит от частоты переменного тока, протекающего по образцу. Для частот 6-10 МГц с увеличением температуры наблюдается сначала небольшой рост, а затем падение Zm . Для частот меньших 6 МГц после начального роста Zm происходит его уменьшение до температуры 160ºС, а затем вновь наблюдается небольшой рост Zm до температур порядка 190ºС, который сменяется падением.
Рис. 7 Зависимость начального Z0 и максимального импеданса Zm фольг Vitrovac 6025Z от температуры в диапазоне частот переменного тока от 0,5МГц до 10МГц.
Зависимости ГМИ-эффекта от температуры для различных частот переменного тока имеют отличия (рис. 8). Для частот 6-10 МГц наблюдается уменьшение ГМИ-эффекта с ростом температуры, для меньших частот наблюдается сначала небольшое увеличение ГМИ-эффекта, а потом его резкое падение.
Рис. 8. Зависимость величины ГМИ-эффекта в фольгах Vitrovac 6025Z от температуры в диапазоне частот переменного тока от 0,5МГц до 10 МГц
2. Методика исследования магнитного импеданса