Курсовая работа: Эффект Пельтье и его применение
П = T
где a - коэффициент Томпсона, Т – абсолютная температура.
Необходимо отметить, что коэффициент Пельтье находится в существенной зависимости от температуры. Некоторые значения коэффициента Пельтье для различных пар металлов представлены в таблице 1.
Таблица 1
Значения коэффициента Пельтье для различных пар металлов | |||||
Железо-константан | Медь-никель | Свинец-константан | |||
T, К | П, мВ | T, К | П, мВ | T, К | П, мВ |
273 | 13,0 | 292 | 8,0 | 293 | 8,7 |
299 | 15,0 | 328 | 9,0 | 383 | 11,8 |
403 | 19,0 | 478 | 10,3 | 508 | 16,0 |
513 | 26,0 | 563 | 8,6 | 578 | 18,7 |
593 | 34,0 | 613 | 8,0 | 633 | 20,6 |
833 | 52,0 | 718 | 10,0 | 713 | 23,4 |
Величина выделяемого тепла Пельтье и его знак зависят от вида контактирующих веществ, силы тока и времени его прохождения, поэтому Qп может быть выражено еще одной формулой:
dQ п = П12ЧIЧdt.
Здесь П12=П1-П2 - коэффициент Пельтье для данного контакта, связанный с абсолютными коэффициентами Пельтье П1 и П2 контактирующих материалов. При этом считается, что ток идет от первого образца ко второму. При выделении тепла Пельтье имеем: Qп>0, П12>0, П1>П2.
При поглощении тепла Пельтье оно считается отрицательным и соответственно: Qп<0, П12<0, П1<П2. Очевидно, что П12=-П21.
Размерность коэффициента Пельтье [П]СИ=Дж/Кл=В.
Классическая теория объясняет явление Пельтье тем, что при переносе электронов током из одного металла в другой, они ускоряются или замедляются внутренней контактной разностью потенциалов между металлами. В случае ускорения кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. В обратном случае кинетическая энергия уменьшается, и энергия пополняется за счёт энергии тепловых колебаний атомов второго проводника, таким образом он начинает охлаждаться. При более полном рассмотрении учитывается изменение не только потенциальной, но и полной энергии.
На рис. 1.2. и рис. 1.3. изображена замкнутая цепь, составленная из двух различных полупроводников ПП1 и ПП2 с контактами А и В.
Рис. 1.2 - Выделение тепла Пельтье (контакт А)
Рис. 1.3 - Поглощение тепла Пельтье (контакт А)
Такую цепь, принято называть термоэлементом, а ее ветви - термоэлектродами. Через цепь течет ток I, созданный внешним источником e. Рис. 1.2. иллюстрирует ситуацию, когда на контакте А (ток течет от ПП1 к ПП2) происходит выделение тепла Пельтье Qп (А)>0, а на контакте В (ток направлен от ПП2 к ПП1) его поглощение - Qп (В)<0. В результате происходит изменение температур спаев: ТА>ТВ.
На рис. 1.3. изменение знака источника меняет направление тока на противоположное: от ПП2 к ПП1 на контакте А и от ПП1 к ПП2 на контакте В. Соответственно меняется знак тепла Пельтье и соотношение между температурами контактов: Qп (А)<0, ТА<ТВ.
Причина возникновения эффекта Пельтье на контакте полупроводников с одинаковым видом носителей тока (два полупроводника n-типа или два полупроводника p-типа) такая же, как и в случае контакта двух металлических проводников. Носители тока (электроны или дырки) по разные стороны спая имеют различную среднюю энергию, которая зависит от многих причин: энергетического спектра, концентрации, механизма рассеяния носителей заряда. Если носители, пройдя через спай, попадают в область с меньшей энергией, они передают избыток энергии кристаллической решетке, в результате чего вблизи контакта происходит выделение теплоты Пельтье (Qп>0) и температура контакта повышается. При этом на другом спае носители, переходя в область с большей энергией, заимствуют недостающую энергию от решетки, происходит поглощение теплоты Пельтье (Qп<0) и понижение температуры.
Эффект Пельтье, как и все термоэлектрические явления, выражен особенно сильно в цепях, составленных из электронных (n - тип) и дырочных (р - тип) полупроводников. В этом случае эффект Пельтье имеет другое объяснение. Рассмотрим ситуацию, когда ток в контакте идет от дырочного полупроводника к электронному (р®n). При этом электроны и дырки движутся навстречу друг другу и, встретившись, рекомбинируют. В результате рекомбинации освобождается энергия, которая выделяется в виде тепла. Эта ситуация рассмотрена на рис. 1.4., где изображены энергетические зоны (ec- зона проводимости,ev- валентная зона) для примесных полупроводников с дырочной и электронной проводимостью.
Рис. 1.4 - Выделение тепла Пельтье на контакте полупроводников p и n-типа
На рис. 1.5. (ec - зона проводимости, ev - валентная зона) иллюстрируется поглощение тепла Пельтье для случая, когда ток идет от n к p-полупроводнику (n ® p).
Рис. 1.5 - Поглощение тепла Пельтье на контакте полупроводников p и n-типа
Здесь электроны в электронном и дырки в дырочном полупроводниках движутся в противоположные стороны, уходя от границы раздела. Убыль носителей тока в пограничной области восполняется за счет попарного рождения электронов и дырок. На образование таких пар требуется энергия, которая поставляется тепловыми колебаниями атомов решетки. Образующиеся электроны и дырки увлекаются в противоположные стороны электрическим полем. Поэтому пока через контакт идет ток, непрерывно происходит рождение новых пар. В результате в контакте тепло будет поглощаться.
Применение полупроводников разных типов в термоэлектрических модулях представлено на рис. 1.6.
Рис. 1.6 - Использование полупроводниковых структур в термоэлектрических модулях
Такая цепь позволяет создавать эффективные охлаждающие элементы.