Курсовая работа: Эконометрическое моделирование
а1 =0,02
Следовательно, уравнение связи между факторами имеет следующий вид:
У=45,06+0,02Х1
4 шаг. Тестирование модели.
Рассчитаем коэффициент линейной корреляции.
Коэффициент адекватности модели рассчитываем при помощи электронных таблиц Excel, используя надстройку. Анализ данных и получаем следующие значения:
Таблица №3
Определение коэффициента детерминации. Он показывает изменение результирующего признака под действием факторного.
Таким образом, действием фактора среднемесячной денежной заработной платы рабочих и служащих можно объяснить лишь 17,5% изменения результирующего признака - розничный товарооборот государственной и кооперативной торговли на душу населения.
Вывод: анализ данной однофакторной модели показал, что она имеет низкую описательную силу. Выявлено наличие слабой связи между показателями среднемесячной денежной заработной платой рабочих и служащих и розничным товарооборотом государственной и кооперативной торговли на душу населения.
5 шаг.
Наблюдение | Предсказанное Y | Остатки |
1 | 55,05728 | 2,942715 |
2 | 53,8394 | -1,2394 |
3 | 54,23747 | -1,53747 |
4 | 55,99975 | 1,200255 |
5 | 56,84968 | -0,14968 |
6 | 55,266 | -2,366 |
7 | 53,4026 | 2,597401 |
8 | 55,82976 | 1,270242 |
9 | 54,30418 | 0,095823 |
10 | 55,68344 | -0,78344 |
11 | 54,7044 | -0,9044 |
12 | 56,17404 | 0,225964 |
13 | 54,60757 | 1,492428 |
14 | 54,53011 | 1,769891 |
15 | 54,64415 | 2,755849 |
16 | 55,195 | -1,595 |
17 | 54,62263 | -0,92263 |
18 | 55,20145 | -2,00145 |
19 | 54,03951 | -1,53951 |
20 | 55,04222 | 1,857778 |
21 | 54,61188 | 2,388125 |
22 | 54,44189 | -1,74189 |
23 | 54,99919 | -1,79919 |
24 | 53,51879 | 0,981207 |
25 | 54,09761 | -2,99761 |
Вывод: в результате анализа однофакторной эконометрической модели, характеризующей взаимосвязь между долей жителей в трудоспособном возрасте и среднемесячной денежной заработной платой рабочих и служащих, можно отметить, что модель имеет высокую описательную силу. Выявлена довольно значительная связь между этими показателями.
Этап №3. Множественная линейная эконометрическая модель
Для сложных систем характерно большое число входных параметров, влияющих на их состояние. Экономические явления представляют собой многофакторные системы, в которых состояние результирующего признака зависит от целой группы таких параметров. Поэтому для изучения процессов в экономике следует применять методы многофакторного анализа. В данном разделе работы проводится пример построения двухфакторной модели, как простейшего случая многофакторных систем.
Y - розничный товарооборот государственной и кооперативной торговли на душу населения
X1 - продажа алкогольных напитков на душу населения
Х2 – среднемесячная денежная заработная плата рабочих и служащих
Расчетные данные указаны в таблице:
Y | X1 | X2 |
2861 | 4,9 | 464,4 |
2102 | 2,5 | 407,8 |
2224 | 3,3 | 426,3 |
2386 | 3,9 | 508,2 |
2671 | 4,9 | 547,7 |
2230 | 3,1 | 474,1 |
2457 | 5,5 | 387,5 |
2733 | 4,5 | 500,3 |
2140 | 4 | 429,4 |
2093 | 2,5 | 493,5 |
2121 | 3,2 | 448 |
2475 | 4,5 | 516,3 |
2553 | 4,8 | 443,5 |
2608 | 3,3 | 439,9 |
2576 | 4,1 | 445,2 |
2290 | 4,2 | 470,8 |
2248 | 3 | 444,2 |
2154 | 3,7 | 471,1 |
2078 | 3,2 | 417,1 |
2590 | 4,7 | 463,7 |
2546 | 4,5 | 443,7 |
2109 | 2,2 | 435,8 |
2398 | 3,4 | 461,7 |
2242 | 3 | 392,9 |
2209 | 4,4 | 419,8 |
Наблюдение | Предсказанное Y | Остатки |
1 | 2568,515 | 292,4853 |
2 | 2069,892 | 32,10848 |
3 | 2235,592 | -11,5916 |
4 | 2454,054 | -68,0542 |
5 | 2683,852 | -12,8521 |
6 | 2266,754 | -36,7543 |
7 | 2567,102 | -110,102 |
8 | 2548,179 | 184,8205 |
9 | 2362,458 | -222,458 |
10 | 2188,552 | -95,5519 |
11 | 2248,127 | -127,127 |
12 | 2570,333 | -95,3331 |
13 | 2522,066 | 30,93408 |
14 | 2254,422 | 353,5778 |
15 | 2401,845 | 174,1545 |
16 | 2454,802 | -164,802 |
17 | 2207,844 | 40,15589 |
18 | 2367,664 | -213,664 |
19 | 2205,343 | -127,343 |
20 | 2532,524 | 57,47573 |
21 | 2469,811 | 76,189 |
22 | 2056,129 | 52,87146 |
23 | 2302,117 | 95,8829 |
24 | 2136,814 | 105,186 |
25 | 2419,208 | -210,208 |
Предположим, что между результирующим и факторными признаками существует линейная связь, выраженная уравнением:
У = а0 + a1 x1 +a2 x2
Для расчета коэффициентов а0 ; a1 ; a2 применим метод наименьших квадратов.
а0 = 1067,5
а1 = 175,1
а2 = 1,38