Курсовая работа: Электрические источники света

Недостатки люминесцентных ламп: снижение коэффициента мощности электрической сети, создание радиопомех и стробо­скопического эффекта из-за пульсации светового потока и т. д.

Стробоскопический эффект состоит в создании у человека при люминесцентном освещении иллюзии того, что движущийся (вращающийся) с некоторой скоростью предмет находится в по­кое или движется (вращается) в противоположную сторону. В производственных условиях это опасно для жизни и здоровья людей. В то же время стробоскопический эффект применяется при проверке правильности работы электросчетчиков. На вра­щающемся диске электросчетчика имеются вдавленные углубле­ния (метки). Если смотреть сверху на диск, освещенный люми­несцентным светом, то в случае правильного хода диска создает­ся впечатление, что углубления (метки) находятся в покое.

Для устранения явлений стробоскопии, снижения радиопо­мех, улучшения коэффициента мощности применяются специ­альные схемы включения люминесцентных ламп.

1.3. Лампы люминесцентные высокого давления

Лампы ртутные высокого давления типа ДРЛ (дуговая ртутная люминесцентная) выпускаются мощностью 50, 80, 125, 175, 250, 400. 700, 1000 и 2000 Вт.

Лампа ДРЛ состоит из стеклянного баллона (колбы) эллипсо­идной формы, на внутренней поверхности которого нанесен слой люминофора — фторогерманата магния (или арсената маг­ния). Для поддержания стабильности свойств люминофора бал­лон заполнен углекислым газом. Внутри стеклянного баллона (колбы) находится трубка из кварцевого стекла, заполненная парами ртути под высоким давлением. Когда в трубке происхо­дит электрический разряд, его видимое излучение проходит че­рез слой люминофора, который, поглощая ультрафиолетовое из­лучение кварцевой разрядной трубки, превращает его в видимое излучение красного цвета.

Средняя продолжительность работы ламп ДРЛ составляет от 6000 ч (лампы мощностью 80 и 125 Вт) до 10 000 ч (лампы мощ­ностью 400 Вт и более).

Для ламп ДРЛ регламентируется также процентное содержа­ние красного излучения (6 и 10 %). Номинальное напряжение сети для всех ламп ДРЛ составляет 220 В. Коэффициент пульса­ции ламп ДРЛ 61-74 %.

К наиболее современным источникам света относятся металлогалогенные лампы, в ртутный разряд которых вводятся добав­ки йодидов натрия, таллия и индия с целью увеличения световой отдачи ламп. Металлогалогенные лампы типа ДРИ (дуговые ртутные йодидные) имеют колбы эллипсоидной или цилиндри­ческой формы, внутри которых размещается кварцевая цилин­дрическая горелка. Внутри этой горелки и происходит разряд в парах металлов и их йодидов.

Мощность ламп ДРИ составляет 250, 400, 700, 1000, 2000 и 3500 Вт. Световая отдача ламп ДРИ составляет 70—95 лм/Вт.

Световая отдача натриевых ламп высокого давления достигает 100—130 лм/Вт. У этих ламп внутри стеклянной цилиндрической колбы помещается разрядная трубка из пол и кристаллического оксида алюминия, инертная к парам натрия и хорошо пропус­кающая его излучение. Давление в трубке — порядка 200 кПа. При таком давлении резонансные линии натрия расширяются, занимая некоторую спектральную полосу, в результате чего цвет разряда становится более белым. Продолжительность работы ламп 10—15 тыс. часов.

Для освещения больших по площади территорий находят применение мощные (5, 10, 20 и 50 кВт) ксеноновые трубчатые безбалластные лампы типа ДКсТ. Они зажигаются с помощью пускового устройства, вырабатывающего высоковольтный (до 30 кВ) высокочастотный импульс напряжения, под воздействием которого в лампе возникает разряд в ксеноне.

Лампы мощностью 5 кВт имеют номинальное напряжение ПО В, мощностью 10 кВт — напряжение 220 В, мощностью 20 и 50 кВт — напряжение 380 В. Световая отдача этих ламп — от 17,6 до 32 лм/Вт.

2. Схемы питания люминесцентных ламп

Люминесцентные лампы включаются в сеть последовательно с индуктивным сопротивлением (дросселем), обеспечивающим стабилизацию переменного тока в лампе.

Дело в том, что электрический разряд в газе имеет неустойчи­вый характер, когда незначительные колебания напряжения вы­зывают резкое изменение тока в лампе.

Различают следующие схемы питания ламп: импульсного за­жигания, быстрого зажигания, мгновенного зажигания.

В схеме импульсного зажигания (рис. 1) процесс зажигания обеспечивается пускателем (стартером). Здесь вначале подогреваются электроды, затем возникает мгновенный импульс напряжения. Стартер представляет собой миниатюрную газоразрядную лампочку с двумя электродами. Колба лампочки заполнена инертным газом неоном. Один из электродов пускате­ля жесткий и неподвижный, а другой биметаллический, изги­бающийся при нагреве. В нормальном состоянии электроды пус­кателя разомкнуты. В момент включения схемы в сеть к элек­тродам лампы и пускателя прикладывается полное напряжение сети, так как ток в цепи лампы отсутствует и, следовательно, по­теря напряжения в дросселе равна нулю. Приложенное к элек­тродам стартера напряжение вызывает в нем газовый разряд, ко­торый в свою очередь обеспечивает прохождение тока неболь­шой силы (сотые доли ампера) через оба электрода лампы и дроссель. Под действием теплоты, выделяемой проходящим то­ком, биметаллическая пластина, изгибаясь, замыкает пускатель накоротко, в результате чего сила тока в цепи возрастает до 0,5— 0,6 А и электроды лампы быстро нагреваются. После замыкания электродов пускателя газовый разряд в нем прекращается, элек­троды остывают и затем размыкаются. Мгновенный разрыв тока в цепи вызывает появление электродвижущей силы самоиндук­ции в дросселе в виде пика напряжения, что и приводит к за­жиганию лампы, электроды которой к тому моменту оказывают­ся раскаленными. После зажигания лампы напряжение на ее за­жимах составляет около половины сетевого. Остальная часть на­пряжения гасится на дросселе. Напряжение, прикладываемое к пускателю (половина сетевого), оказывается недостаточным для его повторного срабатывания.

Рис. 1. Импульсная схема включения люминесцентной лампы в сеть:

1 – пускатель (стартер); 2 – лампа; 3 – дроссель.

В схеме быстрого зажигания (рис. 2) элек­троды ламп включены на отдельные обмотки специального накального трансформатора. При подаче напряжения на негорящую лампу потеря напряжения в дросселе будет невелика, по­вышение напряжения обмоток накала полностью приложено к электродам, которые быстро и сильно раскаляются, и лампа мо­жет зажечься при нормальном сетевом напряжении. В момент возникновения разряда в лампе сила тока накала пускорегулирующего аппарата автоматически уменьшается.

Рис. 2. Схема быстрого зажигания люминесцентной лампы:

1 – дроссель; 2 – лампа; 3 – накальный трансформатор.

В схеме мгновенного зажигания (рис. 3) используется дроссель-трансформатор и отдельный резонансный контур, создающий повышенное (в 6—7 раз больше рабочего) напряжение на лампе в момент включения. Схемы мгновенного зажигания применяются только в отдельных случаях, например во взрывоопасных помещениях с лампами, содержащими специ­альные усиленные электроды. Электроды ламп нормального ти­па в схеме, показанной на рис. 3, быстро изнашиваются. Высо­кое напряжение, подаваемое на лампу в начальный момент, представляет опасность для обслуживающего персонала.

Рис. 3. Схема мгновенного зажигания люминесцентной лампы

1 – лампа; 2 – конденсатор; 3 – дроссель-транформатор.

При работе дросселей возникает шум. Для обеспечения необ­ходимых силы тока и напряжения на зажимах лампы в пусковом и рабочих режимах, повышения коэффициента мощности, уменьше­ния стробоскопического эффекта и снижения уровня радиопомех к люминесцентным лампам придаются специальные пускорегулирующие аппараты. В состав пускорегулирующих аппаратов входят дроссели, конденсаторы (для повышения коэффициента мощно­сти и подавления радиопомех) и сопротивления, помещаемые в общий металлический кожух и заливаемые битумной массой.

По способу зажигания пускорегулирующие аппараты делятся на три группы: стартерного (условное обозначение УБ), быст­рого и мгновенного зажигания (условное обозначение АБ).

Основные типы пускорегулирующих аппаратов для люминес­центных ламп: 1УБИ-40/220-ВП-600У4 или 2УБИ-20/220-ВПП-110ХЛ4, что означает следующее: первая цифра указывает, какое количество ламп включается с аппаратом; УБ —стартерный пускорегулирующий аппарат; И — индуктивный сдвиг фаз потреб­ляемого аппаратом тока (может быть Е — емкостный или К — компенсированный, т. е. компенсирующий стробоскопический эффект); 40 и 20 — мощность лампы, Вт; 220 — напряжение пи­тающей сети, В; В — встроенный аппарат (может быть Н — независимый); П — с пониженным уровнем шума; ПП — с осо­бо низким уровнем шума; 600 и ПО — номер серии или моди­фикация пускорегулирующего аппарата; У и ХЛ - пускорегулирующий аппарат предназначен для эксплуатации в районах с умеренным или холодным климатом соответственно (может так­же быть ТВ — тропический влажный климат; ТС — тропический сухой климат; Т — тропический влажный и сухой; 0 — любой климат на суше); 4 — размещение в помещениях с искусственно регулируемым климатом (может быть 1 — на открытом воздухе; 2 — помещения, плохо изолированные от окружающего воздуха, и навесы; 3 — обычные естественно вентилируемые помещения; 5 — помещения с повышенной влажностью и невентилируемые подземные помещения).

Пускорегулирующие аппараты для дуговых ртутных люминес­центных ламп (ДРЛ), дуговых ртутных йодидных (ДРИ), натрие­вых ламп высокого давления (НЛВД) обозначаются так: 1ДБИ-400ДРЛ/220-Н или 1ДБИ-400ДНаТ/220-В. Здесь ДБ - дроссель балластный; ДРЛ и ДНаТ — тип лампы (ДНаТ означает то же, что и НЛВД); Н — независимый пускорегулирующий аппарат.

Электрическая схема стартерных двухламповых пускорегули­рующих аппаратов дана на рис. 4.

Рис. 4. Электрическая схема стартерного пускорегулирующего аппарата 2 УБИ для двух ламп

1 – дроссель; 2 – лампы; 3 – стартеры.

Пускорегулирующие аппараты для дуговых ртутных люминес­центных ламп типа ДРЛ выполняются с дросселем (рис. 5).

Рис.5. Схема включения ламп типа ДРЛ через дроссель.

1 – дроссель; 2 – лампа; С – конденсатор.

Для включения ламп ДРИ и ДНаТ применяются пускорегу­лирующие аппараты с унифицированными устройствами им­пульсного зажигания, основными элементами которых служат диодные тиристоры (рис. 6). Здесь, однако, повторное включе­ние погасшей не оборудованной специальным блоком мгновен­ного перезажигания лампы возможно только после ее остыва­ния, т. е. через 10—15 мин.

Рис.6 Схема включения ламп типа ДРИ или ДНаТ.

1 – импульсное зажигающее устройство; 2 – балластный дроссель

3. Основные светотехнические величины

Количество света, излучаемого источником, называется све­товым потоком и обозначается Ф. Единица светового потока — люмен (лм).

К-во Просмотров: 472
Бесплатно скачать Курсовая работа: Электрические источники света