Курсовая работа: Электрическое поле
(1.1.3)
Аннигиляция (уничтожение) пары электрон-позитрон
(1.1.4)
Закон взаимодействие точечных зарядов (закон Кулона) экспериментально установлен Ш. Кулоном в 1785г. Для точечных зарядов в вакууме (или воздухе) сила взаимодействия дается формулой
(1.1.5)
Рис. 1.1.1 |
На рис. 1.1.1 показаны разные сочетания взаимодействующих зарядов. Напомним, что по третьему закону Ньютона . Коэффициент в законе Кулона в системе СИ равен и часто записывается в виде .
Параметр иногда называют диэлектрической проницаемостью вакуума.
В среде, которая не проводит электрический ток, сила взаимодействия между зарядами уменьшается по сравнению со случаем взаимодействующих зарядов в вакууме (вне зависимости от величин зарядов и расстояний между ними). Это уменьшение, таким образом, определяется влиянием среды. Оно учитывается введением в коэффициент параметра e, называемого относительной диэлектрической проницаемостью (для большинства сред e >1). А именно .
2. Напряженность электростатического поля. Расчет напряженности для системы точечных зарядов и распределенного заряда
В каждой точке пространства, где есть электромагнитное поле, на пробный заряд q действует определенная сила, зависящая (при заданных зарядах-источниках поля) от величины пробного заряда и его положения относительно источников. При фиксированной величине заряда q, покоящегося в заданном электростатическом поле, эта сила зависит только от его координат (x,y,z). Напряженностью электрического поля называется сила, действующая со стороны электромагнитного поля на пробный заряд q, покоящийся в точке (x,y,z), отнесенная к величине этого заряда:
. (1.2.1)
Формула (1.2.1) дает определение напряженности электростатического поля, если известно, что заряды – источники поля также покоятся. Зная Е как функцию координат нетрудно найти силу, действующую в данном поле на данный заряд в любой точке:
. (1.2.2)
Из закона Кулона (1.1.5) и определения (1.2.1) следует, что напряженность электростатического поля, созданного точечным зарядом Q на расстоянии r от него равна
. (1.2.3)
Поскольку электростатическое поле создается, в конечном счете, точечными зарядами (любое заряженное тело можно рассматривать как систему микроскопических заряженных частиц), то сила, действующая на пробный заряд со стороны произвольного электростатического поля, есть сумма сил, действующих на пробный заряд со стороны каждого точечного источника. Отсюда следует принцип суперпозиции, который посредством формулы (1.2.3) можно выразить формулой для суммы полей точечных зарядов в точке, удаленной на расстояния от них:
. (1.2.4)
Если расстояние от каждого из зарядов до точки наблюдения много больше расстояний между зарядами, то во многих случаях формулу (1.2.4) можно приближенно заменить формулой (1.2.3), где Q –суммарный заряд системы, а r – расстояние от какой-либо точки внутри системы зарядов. При этом, если Q = 0, т.е. система зарядов электрически нейтральна, поле вдали от системы практически отсутствует. Именно поэтому большинство тел, хоть и содержит множество заряженных частиц, не создают поля. Однако этот результат справедлив не для всех зарядовых систем. Системы с Q =0, обладающие, так называемым, дипольным моментом (см. ниже Поляризация), создают вокруг себя заметное поле. В том случае, когда заряд распределен внутри макроскопического тела или некоторой области пространства, его пространственное расположение принято описывать с помощью: объемной плотности заряда (r), поверхностной плотности заряда (s) и линейной плотности заряда (t). Эти величины определяются формулами:
, (1.2.5)
где суммируются заряды всех частиц в объеме dV, на площадке dS и отрезке dl, соответственно. Величины dV, dS, dl выбираются малыми (см. рис. 1.2.1) по сравнению с объемом (площадью, длиной) тела, но содержащим много элементарных заряженных частиц (электронов, ионов).
???.1.2.1
При разбиении заряженного тела объемом V на большое число N малых частей, каждая такая часть может быть рассмотрена как точечный заряд, напряженность поля которого , вычисляется по закону (1.2.3). Применяя принцип (1.2.4) для N, стремящегося к бесконечности, получаем напряженность тела как объемный интеграл:
. (1.2.6)
Аналогично рассчитывают поля от заряженной поверхности (поверхностный интеграл) и от линейного заряженного тела (линейный интеграл).
На рис.1.2.2 показан случай заряженной поверхности. Ниже приведены формулы расчета декартовых компонент напряженности по известной поверхностной плотности заряда s(r):
,
, . (1.2.7)