Курсовая работа: Электроснабжение механического цеха машиностроительного завода
Таблица 2.2 Расчетные данные.
Наименование | ∑Pном,кВт | m | Pсм, кВар | Qсм, кВар | nэ | Kmax |
Pmax, кВт | Qmax,кВар | Smax,кВар |
Шлифовальные станки | 315 | - | 44,1 | 66,1 | - | - | - | - | - |
Обдирочные Станки типа РТ-341 | 175 | - | 30 | 22,8 | - | - | - | - | - |
Кран мостовой | 38 | - | 19 | 28,5 | - | - | - | - | - |
Обдирочные станки типа РТ-250 | 168 | - | 28,5 | 21,6 | - | - | - | - | - |
Анодно-механические станки типа МЭ-31 | 137,6 | - | 23,4 | 17,8 | - | - | - | - | - |
Анодно-механические станки типа МЭ-12 | 72 | - | 12,2 | 9,2 | - | - | - | - | - |
Вентилятор вытяжной | 25 | - | 15 | 11,2 | - | - | - | - | - |
Вентилятор приточный | 28 | - | 17 | 12,7 | - | - | - | - | - |
Итого: | 959 | 8 | 170 | 190 | 6 | 2,24 | 381 | 209 | 255 |
2.2 Расчет и выбор компенсирующего устройства
Передача значительного количества реактивной мощности из энергосистемы к потребителям нерациональна по следующим причинам: возникают дополнительные потери активной мощности и энергии во всех элементах системы электроснабжения, обусловленные загрузкой их реактивной мощностью, и дополнительные потери напряжения в питательных сетях. Ввод источника реактивной мощности приводит к снижению потерь в период максимума нагрузки в среднем на 0,081 кВт/квар. В настоящее время степень компенсации в период максимума составляет 0,25 квар/кВт, что значительно меньше экономически целесообразной компенсации, равной 0,6 квар/кВт.
При выборе средств компенсации реактивной мощности в системах электроснабжения промышленных предприятий необходимо различать по функциональным признакам две группы промышленных сетей в зависимости от состава их нагрузок: первая группа - сети общего назначения (сети с режимом прямой последовательности основной частоты 50 Гц.); вторая группа – сети со специфическими нелинейными, несимметричными и резко переменными нагрузками.
Наибольшая суммарная реактивная нагрузка предприятия, принимаемая для определения мощности компенсирующей установки равна: QM 1 =KHC QP , где KHC – коэффициент учитывающий несовпадения по времени наибольшей активной нагрузки энергосистемы и реактивной нагрузки предприятия.
По входной реактивной мощности QЭ1 определяют суммарную мощность компенсирующего устройства предприятия, а по назначению QЭ2 регулируемую часть компенсирующего устройства.
Суммарную мощность компенсирующего устройства QЭ1 определяют по балансу реактивной мощности на границе электрического раздела предприятия и энергосистемы в период наибольшей активной нагрузки энергосистемы: QK 1 =QM 1 +QЭ2 . Для промышленных предприятий с присоединяемой суммарной мощностью трансформаторов менее 750 кВ*А значение мощности компенсирующего устройства QЭ1 задается энергосистемой и является обязательным при выполнении проекта электроснабжения предприятия.
По согласованию с энергосистемой, выдавшей технические условия на присоединение потребителей, допускается принимать большую по сравнению с QЭ1 суммарную мощность компенсирующего устройства, если это снижает приведенные затраты на систему электроснабжения предприятия в целом.
Средствами компенсации реактивной мощности являются в сетях общего назначения батареи конденсаторов (низшего напряжения – НБК и высшего напряжения – ВБК) и синхронные двигатели в сетях со специфическими нагрузками, дополнительно к указанным средствам, силовые резонансные фильтры (СРФ), симметрирующие и фильтросимметрирующие устройства, устройства динамической и статической компенсации реактивной мощности с быстродействующими системами управления (СТК) и специальные быстродействующие синхронные компенсаторы (ССК).
Компенсация реактивной мощности в электрических сетях общего назначения напряжением до 1000 В
К сетям напряжением до 1000 В. на промышленных предприятиях подключается большая часть потребителей реактивной мощности. Коэффициент мощности нагрузки низкого напряжения не превышает 0,8. Сети напряжением 380-660 В электрически более удалены от источников питания, поэтому передача реактивной мощности в сети низкого напряжения требует увеличения сечений проводов и кабелей, повышения мощности силовых трансформаторов и сопровождается потерями активной и реактивной мощностей. Затраты, обусловленные перечисленными факторами можно уменьшить или даже устранить, если осуществляется компенсация реактивной мощности непосредственно в сети низкого напряжения.
Источниками реактивной мощности в сети низкого напряжения являются синхронные двигатели напряжением 380-660 В. и конденсаторные батареи. При решении задачи компенсации реактивной мощности требуется установить оптимальное соотношение между источниками реактивной мощности низкого напряжения и высокого напряжения, принимая во внимание потери электрической энергии на генерацию реактивной мощности источниками низкого напряжения и высокого напряжения, потери электрической энергии на передачу QMAX . T из сети высшего напряжения в сеть низшего напряжения и удержание трансформаторной подстанции в случае загрузки их реактивной мощностью.
Выбор оптимальной мощности низшего напряжения батареи конденсаторов осуществляют одновременно с выбором цеховой трансформаторной подстанции. Расчетную мощность низшего напряжения батареи конденсаторов округляют до ближайшей стандартной мощности комплектных компенсирующих устройств. Основные технические характеристики нерегулируемой низшего напряжения батареи конденсаторов приведены в таблице, а регулируемые по току и напряжению.
Для каждой цеховой трансформаторной подстанции рассчитывают возможность распределения найденной мощности ПБК в цеховой сети. Критерием целесообразности такого решения является снижение приведенных затрат, обусловленное разгрузкой сети низшего напряжения от реактивной мощности.
Сущность cos φ .
Текущий коэффициент мощности в каждый момент времени:
, (2. 8)
где и - соответственно активная, кажущаяся и реактивная мощности в момент временник , кВт, кВ*А, квар..
Активная и реактивная мощности предприятий изменяются не только в течении длительных промежутков времени (суток, месяцев), но и в течении одной производственной смены.
Значение коэффициента мощности в момент времени ti наиболее точно определяется по фазометру. При отсутствии фазометра cosφ определяется одним из следующих способов:
1. двумя трехфазными ваттметрами или одним ваттметром с переключателем, изменяющим в некоторый момент времени P и Q определяет значение
, (2. 9)
затем по tg φ находится в таблице соответствующий ему