Курсовая работа: Элементы спектрального анализа
Эйчхоф и Кёхлер[49] исследовали люминесцентные характеристики антрацена, 3-метилколантрацена и 3,4 бензпирена при 79 К в н-гептане; в последнем из них была достигнута зависимость интенсивности от концентрации. Относительная ошибка была 6,4 % при концентрации , предел обнаружения был .
Персонов и Теплицкая[41], используя метод абсолютных интенсивностей и метод примесей определили 3,4 бензпирен, перилен и 1,12 бензперилен в органических материалах из минералов и горных пород. Используя настоящий образец, сравнение было сделано между прямым методом и методом стандартных примесей и были получены очень похожие результаты для перилена и 1,12 бензперилена .
Персонов и Теплицкая ,однако, поднимают вопрос о том, что если образец известен не как тушитель флуоресценции и точные требования не налагаются на величину ошибки, анализ может быть в таких случаях проведен, используя метод сравнения со стандартным раствором правильнее, чем со средним числом большинства точных методов стандартных примесей[41].
Ягер и Лугрова[42] после исследования синтетических смесей, также показали, что количество 3,4 бензпирена, найденное после анализов, было всегда меньше, чем количество прибавленное ( -7 -10 % ). Авторы объясняют этот эффект ,как причину интерференции других компонентов, присутствующих в смеси. Также было найдено, что высоконцентрационная граница для анализа 3,4 бензпирена в конечном растворе была , будучи оптимальной при типичном значении.
Данильцева и Хесина [43] установили метод для анализа, 7,12-демитилбензоантрацена в н-октане при 77 К. Предложенный метод был комбинацией двух методов стандартной примеси и внутреннего стандарта (комбинированный метод): 3,4,5,6,7-трибензопирен (ТВР) был выбран внутренним стандартом, так как это соединение имеет отчётливый квазилинейный флуоресцентный спектр в н-октане и, следовательно, не искажает аналитику квазилинейного испускания.
Дикун и др [34] сравнили комбинированный метод, описанный выше с методом внутреннего стандарта и методом примесей для анализа 3,4 бензпирена в н-октане при 77 К. 1,12 бензперилен, был использован как стандарт для методов внутреннего и комбинированного. Это сравнение показало, что большая разница в результатах была получена, когда был использован метод примесей (+ 29 %),и похожие результаты ( 8 - 10 %) были получены, когда был использован или метод внутреннего стандарта, или комбинированный метод.
Дикун со своимисотрудниками, однако, поднимают вопрос о том, что когда анализируются реальные образцы, существует возможность, что они включают другие вещества, которые могут тушить флуоресценцию излучаемых соединения. Согласно Персонову и Теплицкой[41] такие соединения хотя они не представляют реальной проблемы ни в комбинированном методе ни в методе примесей - могут мешать в методе внутреннего стандарта. Количественные анализы для 3,4 бензпирена, сделанные Дикуном и его сотрудниками, в различных образцах, используя внутренний стандарт или комбинированный метод, показывают, что результаты представляют расхождения, но не было возможности прийти к определённому выводу, что примеси, которые присутствуют в образцах были ответственны за различия[34]. Эти сотрудники сделали вывод, что опасность тушения веществами, которая появляется в методе внутреннего стандарта сильно переоценивается Персоновым и Теплицкой.
Из всего вышесказанного ясно, что методы спектрального анализа нашли самое широкое применение и в медицине и в нефтеперерабатывающей промышленности и в фундаментальных исследованиях. Поэтому важную роль при использовании спектров органических соединений играет их достоверность и точность, а это не всегда возможно в силу многих причин.
§2. Факторы, влияющие на точность спектрального анализа.
Резкие квазилинейчатые спектры люминесценции (и поглощения) обладают рядом особенностей, которые позволяют эффективно использовать их в аналитических целях. Эти особенности квазилинейчатых спектров люминесценции сделали их наиболее тонким и точным современным аналитическим методом и указывают на целесообразность и перспективность применения его для спектрохимического анализа многокомпонентных природных смесей[6,7].
1. Специфичность
Тонкость, многочисленность и индивидуальное расположение полос в спектре люминесценции каждого углеводорода позволяют осуществить достоверную идентификацию.
2. Селективность
Позволяет обнаруживать индивидуальные соединения в сложных смесях, когда доля вещества так мала, что спектр флуоресценции при обыкновенной температуре дает лишь слабый намек или вообще не дает указаний на его присутствие.
3. Чувствительность
Чувствительность обнаружения индивидуального углеводорода в «чистых» растворах н-парафинов достигает [7]. Т. е. превосходит на 2—3 порядка чувствительность обычного люминесцентно-спектрального анализа при комнатной температуре и намного превосходит чувствительность методов колебательных спектров.
С помощью квазилинейчатых спектров возможно определение отдельных индивидуальных органических соединений (одновременно 4—5 веществ) в многокомпонентных смесях даже тогда, когда они входят в смесь в виде следов и анализ другими методами невозможен.
Анализ имеющихся экспериментальных данных показывает, что характер квазилинейчатого спектра зависит от условий образования смешанного кристалла (растворитель — вещество). Оптические свойства образовавшегося поликристаллического раствора определяются свойствами растворителя, условиями кристаллизации раствора, наличием люминесцирующей примеси, характером взаимодействия между ними и содержанием в растворе других компонент.
Растворители. Для получения дискретных спектров флуоресценции и поглощения ароматических углеводородов удобными растворителями оказались нормальные парафины, хотя в ряде исследований была показана пригодность для этих целей других жидкостей, кристаллизующихся при замораживании: Для каждого соединения удается подобрать один или группу н-парафинов, в которых условия для возникновения квазилинейчатых спектров наиболее благоприятны. В частности, для соединений с линейной структурой (полиацены, полифенилы, дифенилполиены и т.д.) наиболее резкие спектры наблюдаются в тех случаях, когда линейные размеры молекул растворителя близки к линейным размерам молекул примеси. Меняя растворитель, удается выделить квазилинейчатые спектры различных компонент смеси.
Концентрации. Выбор оптимальных концентраций исследуемого вещества в «чистом» растворителе диктуется следующими соображениями. Как отмечалось ранее в ряде работ [6,7], квазилинейчатый характер имеют спектры молекул, находящихся в замороженном растворе в состоянии так называемого «ориентированного газа», т. е. для этого необходимы небольшие концентрации примесных молекул. Увеличение концентрации приводит к возникновению взаимодействия между молекулами примеси, к миграции энергии между различными компонентами сложной смеси и, возможно, к образованию агрегатов примесных молекул. Это в свою очередь способствует «размыванию» спектра и появлению полос в более длинноволновой области.
Существуют данные о влиянии примеси и на характер кристаллической структуры матрицы, возникающей при замораживании. Под влиянием высоких концентраций растворенного вещества в некоторых участках происходит перестройка матрицы — растворителя, что приводит к изменению характера квазилинейчатого спектра растворенных молекул.
Скорость охлаждения. В ряде работ [7, 32] показано, что характер и структура квазилинейчатых спектров сильно зависят от скорости охлаждения раствора. Обычно кюветы или пробирки с исследуемым раствором быстро погружаются в жидкий азот. В таком случае говорят о быстром замораживании. Однако скорость замораживания раствора существенно зависит от объема и формы кюветы. Можно предположить, что наружные слои раствора замерзают довольно быстро, а внутренние могут промерзать значительное время. В результате условия образования кристаллического раствора в разных частях кюветы неодинаковы, что сказывается на характере спектра излучен?