Курсовая работа: Физика сверхпроводимости

Одним из первых исследований, проведенным в новой температурной области, было изучение зависимости электрического сопротивления металлов от температуры. Словно предвидя развитие событий электротехники, ещё в XIX веке ввели в теорию электричества термин идеальный проводник, т. е. проводник без электрического сопротивления. С другой стороны, и физики, изучавшие свойства металлов, установили, что при сжижении температуры сопротивление металла уменьшается. Но им уже удалось добраться до температуры жидкого водорода, а сопротивление образцов из чистых металлов все падало и падало. А что же дальше? Каким будет предельное значение сопротивления проводника при приближении его температуры к абсолютному нулю.

Большинство ученых придерживалось мнения: при абсолютном нуле электрическое сопротивление должно исчезать. Действительно, электрический ток – это поток свободных электронов проходящих сквозь кристаллическую решетку. Если бы кристалл был идеальным, а его атомы строго неподвижны, то электроны двигались бы совершенно свободно, не встречал помех со стороны кристаллической решетки. Такой кристалл был бы идеальным проводником с нулевым сопротивлением. Однако, во-первых, беспорядочность колебание атомов решетки нарушают ее структуру, а во-вторых, электроны, движущиеся в кристалле, могут взаимодействовать с колеблющимися атомами, передавать им часть своей энергии, что и означает появление электрического сопротивления. При понижении атомов амплитуда колебаний атомов уменьшается, следовательно, столкновение свободных электронов с ними уменьшается, и, таким образом ток встречает меньше сопротивления! При абсолютном нуле, когда решетка уже неподвижна, сопротивление проводника становится равным нулю.

Впрочем, небольшое сопротивление тока может сохранится и при абсолютном нуле, поскольку и тогда некоторые электроны все еще сталкивались бы с атомами решетки. Кроме того, кристаллические решетки, как правило, не являются идеальными: в них всегда есть дефекты и примеси посторонних атомов. С другой стороны была выдвинута гипотеза, согласно которой электроны проводимости при низких температурах объединяются с атомами, что приводит к бесконечно большому сопротивлению при температуре, равной ноль Кельвинов.

До 1911г. трудно было себе представить ещё какое-нибудь другой вариант. Опыт и только опыт может служить физических моделей и критерием их справедливости. Вполне понятно, что одним из первых экспериментов при температуре жидкого гелия стало измерение сопротивление металлов. Сам физический «+» холода не доступен эксперименту, поэтому Камерлинг-Оннес, который к тому времени располагал возможностью получать температуры лишь на один градус выше абсолютного нуля, измерял электрическое сопротивление металлов при разных температурах. Затем строились кривые, которые можно было продолжить, т.е. как бы составить прогноз для интересующей нас области.

Сначала Оннес исследовал образцы платины и золота, так как именно эти металлы имелись тогда в достаточно чистом виде. При понижении температуры образцов сопротивление исправно падало, стремясь к некоторому постоянному значению (остаточному сопротивлению). Однако значения электрических сопротивлений различных образцов, при равных условиях были тем меньше, чем чище оказывался металл. Отсюда вывод: «…учитывая поправку на достаточное сопротивление, я пришел к заключению, что сопротивление абсолютно чистой платиной при температуре кипения жидкого гелия, возможно, исчезнет».

Итак, ртуть Оннес заморозил в сосуде, содержащим жидкий гелий, и приступил к измерению сопротивления.

Вначале все шло так, как предусматривала теория. Электрическое сопротивление ртути плавно падало по мере снижения температуры: 10; 5; 4,2К, и сопротивление стало таким малым, что его вообще не удавалось зарегистрировать приборами, имевшимися в лаборатории. Позднее, в 1913г., вспоминая этот период; Оннест писал: « Будущее казалось мне прекрасным. Я не видел перед собой трудностей. Они были преодолены и убедительность эксперимента не вызвала сомнений». И вдруг случилось неожиданное.

В ходе дальнейших экспериментов на усовершенствованной аппаратуре Оннест заметил, что сопротивление ртути при температуре около 4,1К уменьшалось не плавно, а скачком до неизменно малой величины, т.е. исчезало начисто.

Первая мысль была о неисправности прибора, с помощью которого измерялось сопротивление. Включили другой. И вновь при температуре 4,1К стрелка прибора прыгнула к 0. Здесь было от чего прийти в замешательство: до абсолютного нуля было ещё четыре градуса. И он повторяет эксперимент ещё раз. Изготовляет из ртути новый образец; берет даже очень загрязненную ртуть, у которой остаточное сопротивление должно быть ярко выражено; замеряет измерительный прибор точнейшим зеркальным гальванометром.

Но сопротивление по-прежнему исчезало. Вот тогда, наверное, Камерлине-Оннес и произнес впервые слово сверхпроводимость. «… и не осталось сомнений, - писал Оннес. – в существовании нового состояния ртути, в котором сопротивление физики исчезает… ртуть перешла в новое состояние, и, учитывая его исключительные электрические свойства, его можно назвать «сверхпроводящим состоянием».

Нет нужды говорить о том, каким это была сенсация. Теперь с его именем связывали два существенных события в физике: жидкий гелий и сверхпроводимость. В 1913 году Камерлине-Оннесу была присуждена Нобелевская премия. Разумеется, Оннес думал о загадке сверхпроводимости, но тогда, в декабре 1913 года, ему оставалось только предполагать: «Эта работа должна приподнять покрывало, которым тепловое движение при обычных температурах закрывает от нас внутренний мир атомов и электронов... Из всех областей физики к нам приходят вопросы, ожидающие решения от измерений при гелиевых температурах».

2. Основные понятия

2.1 Конечные температуры (критические)

Совершенный конденсат, охватывающий все электроны, способные объединяться в пары, может существовать только при абсолютном нуле. С повышением температуры тепловое возбуждение в конце концов становится достаточным, чтобы разрушить пары. Образовавшиеся при этом «нормальные», несвязные электроны становятся той разрушительной силой, которая уничтожает электронные пары. Они портят и механизм притяжения между электронами и тем самым ослабляют силы связи между образовавшимися парами. Это ведет в свою очередь к дальнейшему разрушению пар. А когда температура поднимается еще выше, разрушение приобретает катастрофический характер : выше некоторой определенной температуры уже ни одна пара существовать не может. При этом величина критической температуры Тc оказывается одного порядка с энергией спаривания. Основной количественный результат теории – это формула для критической температуры:

Тc =1,14 hхе-1/g (1)

Здесь hх – средняя энергия фононов. По порядку величины равной дебаевской температуре Q; g – постоянная, определяющая силу притяжения между электронами. Значение критической температуры тем выше, чем выше значение температуры Дебая Q и параметра g.

Фононы в твердом теле могут иметь ограниченную энергию. Энергия фонона пропорциональны его частоте х, которая в свою очередь не превышает значения хmax порядка 1013 Гц. Это значит, что энергия фононов не превышает нескольких сотен градусов. Действительно, Еср. max = hхmax ≈ 5·10-23 Дж или в градусах (Е=kТ), Еср. max = hх/k ≈ 500k (постоянная планка h = 6,62·10-39 Дж·с, постоянная Больцмана k = 1,38·10-23 Дж/К). Таким образом дебаевская температура Q обычно лежит в пределах температур 100…500К. что касается параметра g, то для обычных сверхпроводников, у которых роль посредника при спаривании электронов выполняет кристаллическая решетка, g=0,5 и, даже несколько меньше.

Рассмотрим, в каких пределах меняется Тс . У элементарных сверхпроводников, включая элементы, обнаруживающие сверхпроводимость при высоких давлениях, минимальное значение Тс имеет вольфрам: Тс = 0,015 К, максимальное — ниобий: Тс = 9,25 К. У сплавов Тс имеет существенно более высокие значения: V3 Ga — 14,5 K, V3 Si — 17 K, Nb3 Sn - 18 K, Nb3 Al0 ,8 Ge0,2 - 20,7 K. Рекордное значение T 0 до 1986 года имело соединение Nb3 Ge — 23,2 K. У недавно синтезированных углеродных кластеров — фулеренов, легированных калием, K3 C60 , Тс = 20 К. При легировании фулеренов цезием и рубидием (CsC60 и PbC60 ) Тс повышается до 30 К.

После открытия высокотемпературной сверхпроводимости и до настоящего времени в литературе появляются сообщения о наблюдении сверхпроводимости при температурах выше 140 К и даже при комнатной температуре: около 310 К (около +40° С!). Правда, авторы отмечают, что сверхпроводящие фазы, обладающие такими Тс , являются термодинамически неустойчивыми и распадаются при многократном понижении и повышении температуры. Что можно сказать по этому поводу? По-видимому, предельно высоким значением Тс = 135 К при нормальных условиях обладает система HgBa2 Ca2 Cu3 O8 + x . Это термодинамически устойчивое значение. Очень интересно, что если это соединение подвергнуть всестороннему сжатию, то его Тс обратимо повышается до значения ~ 160 К! Это указывает на возможность синтеза сверхпроводников с такими Тс . Насколько реально будет получить термодинамически устойчивые сверхпроводники с более высокими Тс , сказать трудно, хотя получение метастабильных фаз с Тс 300 К является, по-видимому, возможным и представляет, с моей точки зрения, большой интерес, так как свидетельствует о принципиальной возможности существования сверхпроводимости при таких температурах.

Интересно отметить, что до 1986 года существовало мнение, что высокотемпературная сверхпроводимость (при температурах выше температуры кипения жидкого азота) невозможна. Поэтому открытие Беднорцем и Мюллером в 1986 году сверхпроводимости у керамик La2 x Bax CuО4 cТс 3 5 K и La2 x Srx CuO4 cТс 40 K явилось настоящей сенсацией. Вскоре после этого открытия были синтезированы керамики YBa2 Cu3 O7 x c Тс 90 K, Bi2 Sr2 CaCu2 O8 cТс 110 K, Tl2 Ba2 CaCu2 O8 cТс 125 K. В самое последнее время синтезировано соединение HgBa2 Ca2 Cu3 O8 +x с Тс 135 К.

Безусловно, открытие сверхпроводников с такими значениями Тс является выдающимся достижением, так как для охлаждения сверхпроводящих систем стало возможным использовать дешевый и относительно легко доступный жидкий азот вместо дорогостоящего гелия. Тем не менее все приведенные значения Тс существенно ниже комнатной температуры, и поэтому чрезвычайно актуальна возможность синтеза новых сверхпроводников с еще более высокими Тс . Поиском высокотемпературных сверхпроводников заняты сейчас многие лаборатории мира.

2.2 Критический ток

Еще в 1916г. американец Сильбиг высказал предположение, что сверхпроводимость уничтожается таким значением тока в проводнике, которое создает на поверхности сверхпроводника магнитное поле равное критическому. При этом совершенно все равно какое поле на него действует – собственное или приложенное внешнее.

Рассмотрим сверхпроводящую проволоку, по которой течет ток благодаря внешнему источнику. Физики называют этот ток током переноса, т.к. он переносит заряд по проволоке. Если проволока находится во внешнем магнитном поле, то возникшее на поверхности проводника экранизирующие токи складываются с током переноса и в каждой точке ток I можно рассматривать как суммарный. Магнитное поле на поверхности такой проволоки, через которую протекает ток I, определяется выражением В0 = м0 I\2рr, гдеВ0 – поле на поверхности; I – суммарный ток, r – радиус проволоки, м0 - магнитная постоянная. При этом не важно , возбужден ток или навеян магнитным полем, чтобы сверхпроводимость в какой-либо точке сохранилась, суммарный ток в неё не должен превысить критическую величину, присущую данному материалу.

Если полный ток, текущий по сверхпроводнику, достаточно высок, то плотность тока на поверхности достигает критического значения и связанное с ним магнитное поле на поверхности станет равным критическому. Очевидно, чем сильнее внешнее магнитное поле, тем меньше ток переноса, который можно пропускать через сверхпроводник без возникновения в нем сопротивления.

Посмотрим теперь, каким образом происходит переход сверхпроводника в нормальное состояние при достижении критической силы тока.

Если ток течет по сверхпроводнику в присутствии внешнего магнитного поля, то здесь все зависит от того, как распределены в пространстве силовые линии собственного или внешнего магнитных полей. Если же внешнее магнитное поле отсутствует, то можно предположить, что при токе Iс в нормальное состояние переходит лишь внешний цилиндрический слой проволоки, а ее сердцевина– центральная часть - остается сверхпроводящей. Однако это оказывается невозможным.

Ток выбирает путь наименьшего сопротивления и, естественно, будет протекать по сердцевине проволоки, а не по внешнему цилиндрическому слою. Но, как известно, индукция магнитного поля обратно пропорциональна радиусу области, в которой идет ток. Вот и получается, что в центральной части магнитное поле будет больше, чем на поверхности проволоки. Если на поверхности поле достигает своего критического значения с индукцией Вс , то в центральной части оно становится больше критического и сверхпроводящая сердцевина должна уменьшить свой радиус. Этот процесс будет продолжаться до тех пор, пока радиус не обратиться в диаметр, т.е. пока проволока не перейдет в нормальное состояние. Но вся проволока перейти в нормальное состояние не может: поле достигло критического значения лишь на ее поверхности. Поэтому, очевидно, при критическом токе проволока не может быть ни полностью сверхпроводящей, ни полностью нормальной. Сверхпроводник переходит в промежуточное состояние с чередующимися сверхпроводящими и нормальными слоями. Для этого промежуточного состояния был предложен ряд моделей. Ф.Лонодон, например, предложил, что при силе тока I > I с промежуточное состояние сосредотачивается в сердцевине, окруженной нормальной оболочкой.

Позже была предложена другая модель, согласно которой чередование нормальных и сверхпроводящих областей происходит вдоль всей проволоки. По мере возрастания тока сверхпроводящие области все более сжимаются, пока наконец не исчезают полностью.

У сверхпроводников 1-го рода критический ток Ic , при котором сверхпроводимость разрушается, совпадает с током, создающим на поверхности образца магнитное поле Н= Нс (правило Сильсби). Например, для цилиндрического образца радиуса r магнитное поле на его боковой поверхности связано с текущим по образцу током I соотношением

К-во Просмотров: 341
Бесплатно скачать Курсовая работа: Физика сверхпроводимости