Курсовая работа: Физико-химические методы определения остаточных концентраций хлорорганических пестицидов в продуктах питания

Таблица 5. Уровни возможного суточного поступления ХОП в организм человека с молоком и молочными продуктами (в пересчете на молоко), г. Киев, 2002 г.

Пробы молочных продуктов Сумма изомеров ГХЦГ (мг/кг) Сумма производных п, п'-ДДТ (мг/кг)

Сыры:

твердые

0,0007 0,0027
плавленые 0,0005 0,0028
Сметана 0,0004 0,0014
Сырковая масса 0,0003 0,0007
Творог 0,0001 0,0005
Кисломолочные продукты 0,0001 0,0005

«Вольтамперометрический комплекс ИВА-5 для мониторинга элементов – токсикантов в воде и пищевых продуктах» [10]

Контроль содержания токсичных металлов на уровне предельно-допустимых концентраций в природных, питьевых, сточных водах, продуктах питания и продовольственном сырье является важной проблемой, решение которой требует создания новых средств измерения и экспрессных, надежных методов анализа. Метод инверсионной вольтамперометрии, реализованный с использованием графитовых толстопленочных модифицированных электродов, обладает высокой чувствительностью и селективностью, низким влиянием матрицы и простотой в выполнении, легко автоматизируется. Это послужило основой при разработке лабораторного вольтамперометрического комплекса «ИВА-5».

Комплекс включает: электронный блок, электрохимический датчик, программное обеспечение, методическое обеспечение. Электронный блок позволяет в автоматическом режиме выполнять стадии накопления определяемого компонента на рабочем электроде, регистрации и измерения полезного сигнала и регенерации поверхности рабочего графитового электрода. Электрохимический блок связан через коллектор с электронным блоком и включает магнитную мешалку, электрохимическую ячейку, электроды. Индикаторным электродом является уникальный твердофазный графитсодержащий сенсор. Его преимущества перед российскими и зарубежными аналогами: экологическая безопасность; электрохимическая регенерация в процессе анализа; высокая чувствительность и селективность; широкий спектр определяемых элементов, простота и низкая стоимость. Различные варианты этого сенсора запатентованы. Программное обеспечение работает в операционной среде Windows в интерактивном режиме. Программа задает значения всех входных параметров, необходимых для выполнения анализа, обеспечивает математическую обработку аналитических сигналов, расчет концентрации определяемых веществ. Полученные экспериментальные данные могут быть выведены на печать в виде стандартного протокола или помещены в буфер обмена для передачи другим приложениям. Методическое обеспечение комплекса ИВА-5 включает метрологически аттестованные методики измерения концентраций меди, свинца, кадмия, цинка, никеля, хрома, молибдена, марганца, мышьяка, олова и ртути в диапазоне 0,01–10 000 мкг/л.

Лабораторный аналитический комплекс «ИВА-5» включен в Госреестр средств измерений (сертификат №9953) и рекомендован к применению Федеральным государственным центром экологического контроля и анализа Министерства природных ресурсов России.

Пестициды группы хлорфеноксикарбоновых кислот

Применение капиллярного электрофореза

Применение пестицидов было и остается одним из основных путей интенсификации сельскохозяйственного производства. Однако, будучи чужеродными химическими веществами, вносимыми в окружающую среду, пестициды могут представлять собой известную опасность для природы и человека. Многие пестициды способны длительно сохраняться в среде обитания людей, попадая из одного объекта среды в другой и превращаясь в более токсичные соединения. Согласно мировой экологической статистике пестициды входят в группу экотоксикантов, составляющих так называемую «грязную дюжину» [1].

В качестве гербицидов наибольшее распространение получили хлорфеноксикарбоновые кислоты (ФКК) и их производные. Ввиду отсутствия приемлемых альтернативных способов борьбы с сорняками производство и потребление пестицидов этой группы продолжает возрастать. Общая формула для соединений группы хлорфеноксикарбоновых кислот.

Известно влияние заместителей R1 и R2 на гербицидную активность этих соединений. В общем случае возрастание активности происходит при R=Hal, причем максимум гербицидной активности наблюдается при наличии в бензольном кольце двух атомов хлора, при дальнейшем росте числа атомов Hal гербицидная активность снижается. Таким образом, соединения группы 2,4 – дихлорфеноксикарбоновых кислот являются самыми активными гербицидами и, следовательно, наиболее широко используются. Активному распространению соединений группы 2,4 – Д способствует также наличие у отдельных ее представителей (2,4 – Д, 2,4 – ДМ, 2М-4ХП) гормональных свойств: применение препаратов, содержащих указанные гербициды, ведет к интенсификации биосинтеза белка, стимулированию корнеобразования и ускорению дозревания плодов [2].

Наиболее распространенные пестициды группы ФКК и их ПДК в водных объектах представлены в табл. 1.

Таблица 1. Перечень наиболее распространенных пестицидов группы ФКК и их ПДК в объектах окружающей среды

Название Синоним или краткое обозначение ПДК, мг/л
Кислота феноксиуксусная ФУК 1 (питьевая вода)
Кислота 2,4 – дихлорфеноксиуксусная 2,4 – Д 0,03 (питьевая вода)
1 (природная)
Кислота 2-метил-4 хлорфеноксиуксусная 2М-4Х, МСРА 0,02 (воды рыбохоз. водоемов)
0,04 (сан-быт.)
Кислота 2,4,5 – трихлорфеноксиуксусная 2,4,5 – Т Запрещена к применению!
Кислота 2,4 – дихлорфенокси-α-пропионовая Дихлорпроп, 2,4 – ДР 0,5 (питьевая)
0,62 (природная)
Кислота 2-метил-4-хлорфенокси-α-пропионовая Мекопроп, 2М-4ХП, МСРР
Кислота 2,4,5 – трихлорфенокси-α-пропионовая 2,4,5 – ТР, Silvex
Кислота 2,4 – дихлорфенокси-α-масляная 2,4 – ДВ 0,01 (питьевая)

В народном хозяйстве представители ФКК применяются в качестве гербицидов (для борьбы с сорняками), арборицидов (для уничтожения малоценных пород кустарников), альгицидов (для уничтожения водных растений при зарастании водоемов). Попадая в различные объекты окружающей среды, пестициды накапливаются в них либо включаются в различные миграционные цепи (рис. 1). При этом в каждом из объектов окружающей среды пестициды подвергаются всевозможным процессам разложения. ФКК характеризуются сравнительно низкой персистентностью – способностью сохраняться какое-либо время в окружающей среде, не теряя своей биологической активности, и, например, в почве подвержены каталитическим процессам разложения с участием микроорганизмов и ферментов: деалкилированию, дегалогенированию, гидролизу, разрыву кольца и т.д. с образованием в конечном итоге 2,4 – Д и 2,4 – ДХФ (2,4 – дихлорфенола), более стабильных, чем исходные соединения. Обладая хорошей растворимостью в воде, продукты разложения вымываются из почвы и поступают в грунтовые воды, а затем в открытые водные объекты.

Кроме того, в водные объекты ФКК могут поступать как при непосредственном внесении ядохимикатов в водоемы (в качестве альгицидов), так и со стоками химических и родственных производств. В водных объектах ФКК также претерпевают разложение до 2,4 – Д и 2,4 – ДХФ [3].

Стабильность 2,4 – Д в различных объектах отражена в табл. 2 и зависит как от физико-хи?

К-во Просмотров: 218
Бесплатно скачать Курсовая работа: Физико-химические методы определения остаточных концентраций хлорорганических пестицидов в продуктах питания