Курсовая работа: Фізико-технологічні основи фотолітографії
Сухі плівкові фоторезисти . Розширення областей застосування фотолітографії в електронній і радіоелектронній промисловості викликає розширення вимог, пропонованих до фоторезистів. У ряді випадків від фоторезистів не потрібно високої роздільної здатності, однак виникають вимоги поліпшення їхніх захисних властивостей, автоматизації процесів, удосконалення методів нанесення фоторезистів. Особливо це стосується виробництва друкованих плат, тонко- і товстоплівкових схем з розводкою по обидві сторони підкладок із з'єднанням через отвори. У цих випадках формування суцільних фоторезистивних плівок викликає труднощі. Вихід був знайдений ще у 1968 р. із застосуванням так званих сухих плівкових фоторезистів [1]. Структура сухих плівкових фоторезистів показана на рис.1.3.
Для їхнього одержання на установках ламінарного нанесення покриття на несучій основі типу майлара наноситься світлочутлива композиція, висушується і потім зверху накладається плівка іншого полімеру типу поліетилену або поліпропілену. При застосуванні фоторезистів з них знімається захисна поліолефінова плівка і фоторезист накладається за допомогою валкової системи з невеликим підігрівом і при визначеному тиску на підкладку. Плівка майлара залишається на фоторезисті аж до проявлення.
Рис.1.3.Структура сухих плівкових фоторезистів: 1 – поліолефінова плівка; 2 плівковий фоторезист; 3 - майлар.
Після накладання плівка видержується протягом близько 1800 с при кімнатній температурі для проходження в ній релаксаційних процесів. Рекомендується також короткочасне нагрівання при 353 - 373 К (180-300 с). Після експонування плівка майлара видаляється і проводиться проявлення проявниками. З метою збільшення стійкості покриття (особливо у гальванічних процесах) рекомендується додаткова термообробка при температурі 393-423 К протягом 1200-1800 с.
Роздільна здатність таких фоторезистів невелика (50-100 мкм) у зв’язку з тим, що товщина їхніх плівок складає десятки мікрометрів. В даний час випускається широкий спектр плівкових фоторезистів.
Негативні фоторезисти . Історично негативні фоторезисти виникли значно раніше ніж позитивні у вигляді аравійських асфальтів, біхроматних складів, альбуміна, полівінілового спирту. На зміну їм прийшли синтетичні композиції, що володіють більшою стабільністю, більш високими захисними властивостями. До них відносяться склади на основі світлочутливих полімерів, що містять групи СО - СH = СН - R, наприклад полівінілциннамат і його похідні, склади на основі циклокаучуків і їх похідних і світлочутливих добавок типу бісазидів.
Одним з основних питань при порівняльній оцінці фоторезистів є питання - коли і де можна застосовувати негативні склади? Однозначно відповісти на це питання часом досить складно, тому що в ряді випадків їхнє застосування обумовлюється чисто історичними причинами. Наприклад, одні з перших зразків інтегральних мікросхем на кремнії були створені із застосуванням фоторезистів на основі полівінілциннамата, однак потім у технологію для проведення цих же операцій були введені позитивні матеріали. Застосування негативних фоторезистів стає необхідним, коли це потрібно по умовам суміщення або коли позитивні фоторезисти не витримують впливу лужних травників, або не допускається дія лужних проявників на підкладку. Фоторезисти володіють хорошою адгезією практично до всіх до металів, напівпровідників і окислів, і рекомендуються для проведення електрохімічних процесів осадження. Обмеження по застосуванню негативних фоторезистів пов’язано в основному з їх обмеженою порівняно з позитивними складами роздільною здатністю із-за ефектів набухання при проявленні. Другим фактором, який обмежує застосування цих фоторезистів є відсутність у них достатньої фотографічної широти виготовлення елементів зображення при умові формування плівок після проявлення необхідної товщини.
Ще складнішим є вибір фоторезиста серед існуючих негативних матеріалів, так як їх основні параметри досить близькі один до одного. Можна відмітити, що склади на основі циклокаучуку краще проявляють свої властивості на підкладках, які не містять мідь, а фоторезисти на основі полівінілциннамата володіють не достатньою адгезією до поверхні SiO2 з великим вмістом води, в той час, як склади на основі циклокаучуку мало чутливі до сіланольних груп.
Позитивні фоторезисти . Відрізняючись своєю високою роздільною здатністю і точністю виготовлення елементів інтегральних мікросхем в достатньо широкому технологічному діапазоні, позитивні фоторезисти займають у даний час домінуюче положення в мікроелектронній технології.
До складу усіх фоторезистів входять світлочутливі компоненти хінондіазидного типу, полімерні складові, система розчинників і різні добавки, що регулюють властивості матеріалу.
О-хінондіазиди використовуються, як правило, у виді різних сульфо- або амідоефірів, що дозволяє значно поліпшити їхню розчинність і сумісність з полімерами. Так, о-хінондіазиди можуть використовуватися у виді сульфоефірів з різними фенолформальдегідними смолами.
Однією з особливостей позитивних фоторезистів порівняно з негативними є те, що їх складові являються жорстколанцюговими смолами з невеликою молекулярною масою і низькомолекулярними світлочутливими компонентами. Їх плівкоутворення у великій степені залежить від системи розчинників, їх енергетичних властивостей, співвідношення швидкостей випаровування і часу центрифугування [1].
В техніці експонування і проявлення позитивних фоторезистів порівняно з негативними є дві основні відмінності: режими проявлення можуть в значній мірі коректувати режими експонування; плівки позитивних фоторезистів практично не чутливі до впливу кисню.
Фоторезисти мають сенсометричні характеристики, до яких відносять світлочутливість і контрастність [9]. Вони визначаються із характеристичної кривої фоторезиста. Характеристична крива представляє собою залежність товщини шару на експонованих областях після проявлення від експозиції Н. Експозиція Н - це енергія випромінювання , що припадає на одиницю шару фоторезиста:
Н = Е/t.
Тут Е - енергетичнаосвітленістьповерхні шару; t - час експонування.
1.2. Методи виготовлення і характеристики фотошаблонів
Для одержання комплекту фотошаблонів - набору стекол із суміщенням множинних зображень, що мають малі розміри елементів і велику загальну площу - застосовуються три методи (або їх поєднання): оптико-механічний, об'єднуючий проекцію малої площі з послідовною високороздільною мультиплікацією і заснований на застосуванні фотоповторювачів; сканування, у якому використовуються модулюючі по тривалості або амплітуді світлові або електронні пучки; растровий, який здійснюється за допомогою лінзових, дзеркальних або голографічних растрових пристроїв. В даний час оптико-механічний метод найбільш розповсюджений [3,4]. Розглянемо загальну схему процесу виготовлення комплекту фотошаблонів і сучасне устаткування для його здійснення.
При організації процесу доцільно виділити два види інформації: основну - про топологію структур і додаткову (або вторинну) - про тип шаблонів, мультиплікацію, порядок контролю і т.д. Схема виготовлення фотошаблонів приводиться на рис.1.4.
Спочатку розробляється технічне завдання на комплект фотошаблонів. Формується основна і додаткова інформація, причому остання грає досить важливу роль. До неї відносяться:
1. Указівки про тип шаблонів - із прозорими елементами на темному полі або з темними елементами на світлому. Такий розподіл має значення як для зменшення і мультиплікації (оскільки від типу шаблона будуть залежати умови експонування), так і для контролю шаблонів. При контролі важливо знати тип фотошаблона, тому що ним визначається характер небезпечних дефектів. Наприклад, фотошаблон для створення бази транзистора представляє прозорі вікна на темному полі і небезпечними дефектами є непрозорі острівці хрому.
2. Інформація про мультиплікацію. Крім кількості мультиплікативних структур позначаються пропуски структур, що полегшують суміщення і контроль, а також будь-які інші неперіодичні зображення.
3. Контрольна інформація, яка поділяється на два види. Один вид (задаючий) показує, яким чином виконуються помітки суміщення й обов'язкові для складних приладів тестові структури, що дозволяють перевіряти роздільну здатність фотолітографії, технологічні параметри (поверхневий опір, дефекти окисла) і електричні параметри пристрою. До другого виду відносяться вказівки про методику і критерії контролю характеристик виготовлених шаблонів: розмірів, сумісності, критичних областей, дефектів і т.д.
Наступною стадією є виготовлення оригіналів, що здійснюється в основному за допомогою ручних і автоматичних координатографів. Прагнення підвищити швидкість виготовлення складних оригіналів привело до того, що звичайні методи вирізки замінилися фотографічними. Прикладом реалізації фотографічного методу служить автоматичний координатограф, у якому пучок світла малює зображення на фотопластині або лазерний пучок випалює зображення в тонкоплівковому покритті.
Існують два фотографічних методи створення проміжного зображення [3]: фотонабірний метод і метод сканування модулюючим пучком світла. Фотонабірний генератор зображень містить наступні основні вузли:
- джерело освітлення з ртутною лампою надвисокого тиску;
- діафрагма змінюваної конфігурації, наприклад у виді пелюстків, що сходяться, які утворюють прямокутні отвори різного розміру (до 65 тис. варіантів), діафрагма може також повертатися на 90° (з дискретним кроком, наприклад, 0,2°) відносно центра;
- високоякісний об'єктив, що проектує зі зменшенням в 10 разів отвір діафрагми на фотопластинку;
- координатний стіл, що переміщається по двох осях з високою точністю (порядку ±0,5 мкм); переміщення столу здійснюється серводвигунами й керується лазерними інтерферометрами;
- керуюча ЕОМ, у яку вводиться програма послідовної роботи генератора, що містить наступні основні операції: установлення довжини, ширини і кута повороту діафрагми; установлення координати однієї з крапок елемента зображення; переміщення по осях і поворот столу; експонування.
Ще більшої продуктивності дозволяє досягти генератор зображень зі скануючим променем. В одному з можливих варіантів такого генератора промінь гелій-неонового лазера модулюється по визначеній програмі, потім попадає на обертове десятигранне дзеркало і фокусується в площині фотопластинки. Грань дзеркала розвертає світлову пляму в лінію, відбувається зрушення столу з фотопластинкою і наступна грань створює нову лінію, що перекривається частково з першою. Конфігурація зображення, що виходить, визначається тривалістю світлових імпульсів, числом оборотів дзеркала і швидкістю переміщення столу. За допомогою такого генератора проміжний фотошаблон середньої складності створюється за 10-12 хвилин замість 24 годин, необхідних при роботі з автоматичним координатографом.
Мультиплікація здійснюється за допомогою фотоповторювачів, що представляють собою сумісність високороздільної редукційної камери (або декількох) з точним координатним столом. Для мультиплікації також потрібні об'єктиви дуже високої якості, але з трохи різними характеристиками. Для досягнення гранично високої здатності (більш 1000 ліній/мм) робоче поле об’єктива приходиться зменшувати; в більшості випадків його діаметр не перевищує 4-8 мм [3,4].