Курсовая работа: Флуоресцентный иммуноанализ с временным разрешением
Флуоресцентный иммуноанализ с временным разрешением
Введение
За последние 25 лет благодарят появлению новых, альтернативных радиоиммуноанализу методов иммуноанализа коренным образом изменились наши представления о возможностях, а также о сфере применения иммуноанализа. Многообразие методик позволило проводить определение бактерий, вирусов, макромолекул и гаптенов, причем в некоторых случаях было достигнуто повышение чувствительности в 106 раз по сравнению с традиционными методами. В большинстве методов иммуноанализа в том или ином варианте используется свет; такие методы можно подразделить на группы в соответствии со способом измерения сигнала - поглощением, отражением, рассеянием или испусканием фотонов.
Основные требования к любой методике иммуноанализа зависят от целей анализа. Так, концентрация определяемого вещества в пробе диктует необходимые чувствительность и диапазон определяемых концентраций. Например, для определения лекарственных препаратов очень высокая чувствительность обычно не нужна, тогда как при определении вирусных и опухолевых антигенов желательна такая чувствительность, какую ни один метод в настоящее время не обеспечивает. Следовательно, при предъявлении требований к конкретной) методике альтернативных методов иммуноанализа необходимо прежде всего детально рассмотреть соответствующую аналитическую задачу.
В этой главе рассматриваются методы иммуноанализа не требующие радиоактивных меток. Очевидно, чтобы оказаться достаточно жизнеспособными, эти новые альтернативные методы иммуноанализа по своим характеристикам не должны уступать иммунорадиометрическому анализу или радиоиммуноанализу. Кроме того, альтернативные методы иммуноанализа должны иметь большие потенциальные возможности для дальнейшего повышения чувствительности, быть простыми, дешевыми, требовать как можно меньше времени для проведения анализа и т.д. При этом альтернативные методы иммуноанализа должны сохранять высокую специфичность и точность.
1. Основные требования к альтернативным методам иммуноанализа
Для минимизации влияния на реакцию антиген-антитело желательно, чтобы метка представляла собой небольшую молекулу. Кроме того, небольшая метка упрощает синтез стабильных конъюгатов, сохраняющих высокую удельную активность. При измерении метки отношение сигнал/шум должно быть максимальным. Сигнал должен быть постоянным, а его измерение - быстрым, хорошо воспроизводимым и осуществимым с помощью доступных приборов. Схема проведения анализа должна предусматривать быструю подготовку и обработку проб. Реагенты должны быть безвредными и легко удаляемыми.
Методика должна:
1) быть применимой как для двухсайтового иммунометрического анализа белков, так и для прямых конкурентных анализов гаптенов, основанных на принципе связывания;
2) иметь соответствующие чувствительность, точность и рабочий диапазон определяемых концентраций с минимальным разбросом результатов во всем диапазоне;
3) легко совершенствоваться с целью дальнейшего повышения чувствительности и упрощения анализа.
Потенциально в методике должна быть заложена возможность ее усовершенствования и применения к анализам других веществ, внелабораторным и безразделительным анализам и к одновременному определению нескольких веществ.
Ранее в литературе уже неоднократно сообщалось об ультрачувствительных иммунометрических методах анализа с ферментным усилением, а также о многочисленных примерах применения фотометрических и нефелометрических методов иммуноанализа. Однако природа меток и характеристики приборов никак не удовлетворяют всем требованиям к иммуноанализу. Идеальным методам иммуноанализа, по всей вероятности, в наибольшей степени соответствуют люминесцентные или фотоэмиссионные методы, в которых детекция метки проводится iio регистрации излучения света.
1.1 Люминесценция
Люминесценция - это эмиссия света веществом, находящимся в электронно-возбужденном состоянии. Существуют несколько типов люминесценции, различающихся только источниками энергии, которая переводит электроны в возбужденное состояние, т.е. на более высокий энергетический уровень, а именно:
Радиалюминесценция, в которой возбуждение соответствующего флуорофора достигается за счет поглощения энергии, выделяющейся в процессе необратимого радиоактивного распада. Возбужденный флуорофор излучает свет, возвращаясь в основное состояние.
Хемилюминесценция, в которой возбуждение достигается в результате химической реакции. Если химическая реакция осуществляется в биологических системах под действием ферментов, то в этом случае обычно употребляют термин биолюминесценция. Если химическая реакция инициируется повышением температуры реагентов, то такой тип люминесценции называют термохемилюминесценцией; если же реакцию инициирует электрический потенциал, то соответствующее явление называют электрохемилюминесценцией.
3) Фотолюминесценция, в которой возбуждение вызывают фотоны инфракрасного, видимого или ультрафиолетового света. Фотолюминесценцию можно далее подразделить на флуоресценцию, когда возбужденная молекула быстро возвращается в исходное состояние через синглетное состояние, и фосфоресценцию, когда возбужденная молекула возвращается в исходное состояние через триплетное состояние. Эмиссия фосфоресценции затухает намного медленнее. Испускаемые кванты света имеют большую длину волны. Фотолюминесценция отличается от радио - и хемилюминесценции тем, что она обычно обратима, и поэтому в данной системе ее можно индуцировать повторно.
Различные типы люминесценции схематично изображены на рис.1, а некоторые их характеристики рассмотрены в работе. В гл.12-14 описаны успехи хемилюминесцентного иммуноанализа.
1.2 Фотолюминесцентный иммуноанализ. Молекулы
Люминофора поглощают свет с определенной длиной волны, который переводит их электроны из основного на более высокий энергетический уровень. Возбужденные молекулы возвращаются в основное состояние, отдавая избыточную энергию либо без излучения света, либо посредством излучения. В последнем случае электроны возбужденной молекулы переходят или непосредственно на основной уровень, или через промежуточное метастабильное триплетное состояние. Излучаемая энергия несколько меньше поглощенной, поэтому длины волн возбуждения и эмиссии света различны, а соответствующую разность называют стоксовым сдвигом. При флуоресценции этот сдвиг обычно равен 30-50 нм, а при фосфоресценции он может превышать 200 нм. Отношение интенсивности поглощенного света к интенсивности испускаемого света называют квантовым выходом. Другим важным параметром является время существования возбужденного состояния. В принципе измерение интенсивности флуоресценции - это очень чувствительный метод, однако обычно чувствительность составляет Ю^-Ю'^2 моль/л флуорофора из-за высокого фонового сигнала, обусловленного рассеянием света или наличием флуоресцирующих соединений в пробе, реагентах или кюветах. Кроме того, флуоресцирующие молекулы обычно очень чувствительны к изменениям параметров микроокружения. Так, небольшие колебания температуры, рН, полярности среды, степени окисления или присутствие гасящих групп изменяют квантовый выход или длину волны испускаемого света. Могут иметь место и так называемые "эффекты внутренних фильтров", когда две сближенные флуоресцирующие группы молекулы белка взаимно гасят флуоресценцию. Чаще всего в флуоресцентном иммуноанализе в качестве меток применяют флуоресцеин, родамин, умбеллиферон, а с недавнего времени также хелаты редкоземельных металлов. Реже применяют флуорескамин, люцифер желтый, 1 - анилино-8-нафта-линсульфокислоту, дансилхлорид, производные пирена, природные порфирины и хлорофиллы, а также фикобилипротеины из морских водорослей. Последние обладают очень высокой интенсивностью флуоресценции.
Идеальный флуорофор должен иметь следующие характеристики:
1) высокий квантовый выход флуоресценции;
2) большой стоксов сдвиг;
3) способность возбуждаться обычными источниками света;
4) возможность измерения эмиссии с помощью обычных фотоумножителей;
5) простоту методики введения метки; б) устойчивость и сохранение иммунологической активности веществ, меченных флуорофором.
Опубликован обзор, посвященный успехам иммуноанализа с применением флуоресцентных меток. Следовательно, с помощью флуориметра с временным разрешением эмиссию комплексов европия можно измерять независимо от фоновой флуоресценции, обладающей небольшим временем затухания.
Таблица 1. Элементы группы лантанидов
Элемент | Символ | Атомный номер | Атомная масса |
Лантан | La | 57 | 139 |
Цернй | Се | 58 | 140 |
Празеодим | Рг | 59 | 141 |
Неодим | Nd | 60 | 144 |
Прометни | Pm | 61 | 145 |
Самарий | Sm | 62 | 150 |
Европий | Eu | 63 | 152 |
Гадолиний | Gd | 64 | 157 |
Тербий | Tb | 65 | 159 |
Диспрозий | Dy | 66 | 162 |
Гольмий | Ho | 67 | 165 |
Эрбий | Er | 68 | 167 |
Тулий | Tm | 69 | 169 |
Иттербий | Yb | 70 | 173 |
Лютеций | Lu | 71 | 175 |
Метка. Европий - металл из группы лантанидов, перечисленных в табл.1. По атомной массе и диаметру атом европия не отличается от радиоактивного изотопа йода, который обычно применяют в РИА и ИРМА. В отличие от 125 1 европий не радиоактивен и поэтому не разрушает меченные им молекулы веществ за счет радиолиза. Для образования конъюгата европия с иммунореактивным компонентом, как и в случае йода, необходимо соединение-носитель.
Для образования хелатов ионов европия применяют производные поликарбоновых кислот, например этилендиаминтетрауксусную кислоту или бисгликолевый эфир N,N,N',N'-Teтpayкcycной кислоты, имеющие функциональные группы для связывания со свободными аминогруппами белков или гаптенов. Однако доступные хелаты европия, используемые для конъюгирования, имеют очень низкий квантовый выход флуоресценции.
1.3 Возникновение устойчивого сигнала
Время запаздывания и интенсивность флуоресценции хелатов европия зависят от структуры лигандов и от природы их физического окружения. Для измерения флуоресценции европия с достаточно высокой чувствительностью необходимо разложить комплекс с иммуно-реактивными компонентами. Это достигается понижением рН до 2-3 путем добавления соответствующего буферного раствора. При низких рН различные - дикетоны связывают ионы европия, образуя хелатные соединения с высокой интенсивностью флуоресценции. Для подавления гашения необходимо также исключить воду из микроокружения комплекса. Для этой цели добавляют детергент, который переводит малорастворимый органический комплекс в мицеллярную фазу. Добавление триоктилфосфиноксида в еще большей степени изолирует комплекс в такой мицелле от воды. Этот метод подробно описан в работе и назван DELFIA, т.е. флуоресцентный иммуноанализ с лантанидной меткой, флуоресценция которой усилена за счет диссоциации. Наборы реагентов для проведения такого типа иммуноанализа выпускает фирма LKBWallac.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--