Курсовая работа: Фракционный состав нефти

• Керосиновая фракция включает углеводороды от С12 Н26 до С18 Н38 с температурой кипения от 180 до 300 °С. Керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.

• Газойлевая фракция (tкип > 275 °С), по-другому называется дизельным топливом.

• Остаток после перегонки нефти – мазут – содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции перегонкой под уменьшенным давлением, чтобы избежать разложения. В результате получают соляровые масла (дизельное топливо), смазочные масла (автотракторные, авиационные, индустриальные и др.), вазелин (технический вазелин применяется для смазки металлических изделий с целью предохранения их от коррозии, очищенный вазелин используется как основа для косметических средств и в медицине). Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.). После отгонки летучих компонентов из мазута остается гудрон. Его широко применяют в дорожном строительстве. Кроме переработки на смазочные масла мазут также используют в качестве жидкого топлива в котельных установках.

3. Метод однократного и постепенного испарения

Разделение нефти на составные части (фракции) по их температурам кипения в целях получения товарных нефтепродуктов или их компонентов. Перегонка нефти— начальный процесс переработки нефти на нефтеперерабатывающих заводах, основанный на том, что при нагреве нефти образуется паровая фаза, отличающаяся по составу от жидкости. Фракции, получаемые в результате перегонки нефти, обычно представляют собой смеси углеводородов. С помощью методов многократной перегонки нефтяных фракций удаётся выделить некоторые индивидуальные углеводороды. Перегонка нефти осуществляется методами однократного испарения (равновесная дистилляция) или постепенного испарения (простая перегонка, или фракционная дистилляция); с ректификацией и без неё; в присутствии перегретого водяного пара —испаряющего агента; при атмосферном давлении и под вакуумом. При равновесной дистилляции разделение нефти на фракции происходит менее четко по сравнению с простой перегонкой. Однако в первом случае при одной и той же температуре нагрева в парообразное состояние переходит большая часть нефти. В лабораторной практике в основном применяется простая перегонка нефти с ректификацией паровой фазы на установках периодического действия. В промышленности используется перегонка нефти с однократным испарением в сочетании с ректификацией паровой и жидкой фаз. Такое сочетание позволяет проводить перегонку нефти на установках непрерывного действия и добиваться высокой чёткости разделения нефти на фракции, экономного расходования топлива на её нагрев. Применение водяного пара приводит к снижению температурного режима, увеличению отбора нефтяных фракций и повышению концентрации высококипящих компонентов в остатке. На промышленных установках перегонка нефти вначале проводится при атмосферном давлении, а затем под вакуумом. При атмосферной перегонке нефть нагревается не выше 370 °С, так как при более высокой температуре начинается расщепление углеводородов — крекинг, а это нежелательно из-за того, что образующиеся непредельные углеводороды резко снижают качество и выход целевых продуктов.

В результате атмосферной перегонка нефти отгоняются фракции, выкипающие примерно от 30 до 350—360 °С, и в остатке остаётся мазут. Из нефтяных фракций, выкипающих до 360 °С, получаются различные виды топлив (бензины, топлива для реактивных и дизельных двигателей), сырьё для нефтехимического синтеза (бензол, этилбензол, ксилолы, этилен, пропилен, бутадиен), растворители и др. Дальнейшая перегонка мазута проводится под вакуумом (остаточное давление 5,3—8 кн/м2 , или 40—60 мм рт. ст.), чтобы свести к минимуму крекинг углеводородов. В СССР на ряде нефтеперерабатывающих заводов производительность установок атмосферно-вакуумной переработки нефти доводилась до 8 млн. т нефти в год.

При перегонке с однократным испарением нефть нагревают в змеевике какого-либо подогревателя до заранее заданной температуры. По мере повышения температуры образуется все больше паров, которые находятся в равновесии с жидкой фазой, и при заданной температуре парожидкостная смесь покидает подогреватель и поступает в адиабатический испаритель. Последний представляет собой пустотелый цилиндр, в котором паровая фаза отделяется от жидкой. Температура паровой и жидкой фаз в этом случае одна и та же. Четкость разделения нефти на фракции при перегонке с однократным испарением наихудшая.

Перегонка с многократным испарением состоит из двух или более однократных процессов перегонки с повышением рабочей температуры на каждом этапе.

Если при каждом однократном испарении нефти происходит бесконечно малое изменение ее фазового состояния, а число однократных испарений бесконечно большое, то такая перегонка является перегонкой с постепенным испарением.

Четкость разделения нефти на фракции при перегонке с однократным испарением наихудшая по сравнению с перегонкой с многократным и постепенным испарением.

Если для нефтяной фракции построить кривые разгонки с однократным и многократным испарением , то окажется, что температура начала кипения фракций при однократном испарении выше, а конца кипения ниже, чем при многократном испарении. Если высокой четкости разделения фракций не требуется, то метод однократного испарения экономичнее. К тому же при максимально допустимой температуре нагрева нефти 350 — 370°С (при более высокой температуре начинается разложение углеводородов) больше продуктов переходит в паровую фазу по сравнению с многократным или постепенным испарением. Для отбора из нефти фракций, выкипающих выше 350 — 370°С, применяют вакуум или водяной пар. Использование в промышленности принципа перегонки с однократным испарением в сочетании с ректификацией паровой и жидкой фаз позволяет достигать высокой четкости разделения нефти на фракции, непрерывности процесса и экономичного расходования топлива на нагрев сырья. Исходная нефть прокачивается насосом через теплообменники, где нагревается под действием тепла отходящих нефтяных фракций и поступает в огневой подогреватель (трубчатую печь). В трубчатой печи нефть нагревается до заданной температуры и входит в испарительную часть (питательную секцию) ректификационной колонны. В процессе нагрева часть нефти переходит в паровую фазу, которая при прохождении трубчатой печи все время находится в состоянии равновесия с жидкостью. Как только нефть в виде парожидкостной смеси выходит из печи и входит в колонну (где в результате снижения давления дополнительно испаряется часть сырья), паровая фаза отделяется от жидкой и поднимается вверх по колонне, а жидкая перетекает вниз. Паровая фаза подвергается ректификации в верхней части колонны, считая от места ввода сырья. В ректификационной колонне размещены ректификационные тарелки, на которых осуществляется контакт поднимающихся по колонне паров со стекающей жидкостью (флегмой). Флегма создается в результате того, что часть верхнего продукта, пройдя конденсатор-холодильник, возвращается в состоянии на верхнюю тарелку и стекает на нижележащие, обогащая поднимающиеся пары низкокипящими компонентами.

Для ректификации жидкой части сырья в нижней части ректификационной части колонны под нижнюю тарелку необходимо вводить тепло или какой-либо испаряющий агент. В результате легкая часть нижнего продукта переходит в паровую фазу и тем самым создается паровое орошение. Это орошение, поднимаясь с самой нижней тарелки и вступая в контакт со стекающей жидкой фазой, обогащает последнюю высококипящими компонентами.

В итоге сверху колонны непрерывно отбирается низкокипящая фракция, снизу — высококипящий остаток.

Испаряющий агент вводится в ректификационную колону с целью повышения концентрации высококипящих компонентов в остатке от перегонки нефти. В качестве испаряющего агента используются пары бензина, лигроина, керосина, инертный газ, чаще всего — водяной пар.

В присутствии водяного пара в ректификационной колонне снижается парциальное давление углеводородов, а следовательно их температура кипения. В результате наиболее низкокипящие углеводороды, находящиеся в жидкой фазе после однократного испарения, переходят в парообразное состояние и вместе с водяным паром поднимаются вверх по колонне. Водяной пар проходит всю ректификационную колонну и уходит с верхним продуктом, понижая температуру в ней на 10 — 20°С. На практике применяют перегретый водяной пар и вводят его в колонну с температурой, равной температуре подаваемого сырья или несколько выше (обычно не насыщенный пар при температуре 350 — 450°С под давлением 2 — 3ат).

Влияние водяного пара заключается в следующем:

- интенсивно перемешивается кипящая жидкость, что способствует испарению низкокипящих углеводородов;

- создается большая поверхность испарения тем, что испарение углеводородов происходит внутрь множества пузырьков водяного пара.

Расход водяного пара зависит от количества отпариваемых компонентов, их природы и условий внизу колонны. Для хорошей ректификации жидкой фазы внизу колонны необходимо, чтобы примерно 25% ее переходило в парообразное состояние.

В случае применения в качестве испаряющего агента инертного газа происходит большая экономии тепла, затрачиваемого на производство перегретого пара, и снижение расхода воды, идущей на его конденсацию. Весьма рационально применять инертный газ при перегонке сернистого сырья, т.к. сернистые соединения в присутствии влаги вызывают интенсивную коррозию аппаратов. Однако инертный газ не получил широкого применения при перегонке нефти из-за громоздкости подогревателей газа и конденсаторов парогазовой смеси (низкого коэффициента теплоотдачи) и трудности отделения отгоняемого нефтепродукта от газового потока.

Удобно в качестве испаряющего агента использовать легкие нефтяные фракции — лигроино-керосино-газойлевую фракцию, т.к. это исключает применение открытого водяного пара при перегонке сернистого сырья, вакуума и вакуумсоздающей аппаратуры, и, в то же время, избавляет от указанных сложностей работы с инертным газом.

Чем ниже температура кипения испаряющего агента и больше его относительное количество, тем ниже температура перегонки. Однако чем легче испаряющий агент, тем больше его теряется в процессе перегонки. Поэтому в качестве испаряющего агента рекомендуется применять лигроино-керосино-газойлевую фракцию.

4. Кривые ИТК и ОИ как характеристики нефти

Однократная перегонка осуществляется испарением или дросселированием жидкой смеси. В связи с этим для получения заданной доли отгона сырья однократное испарение позволяет вести процесс разделения с меньшей вероятностью термического разложения компонентов смеси. В том случае, когда летучести компонентов разделяемой смеси различаются значительно и остаток представляет собой смесь тяжелых углеводородов со смолисто-асфальтеновыми соединениями, разделение методом дросселирования может вызвать достаточно резкое понижение температуры и увеличение вязкости остатка.

Вакуум и водяной пар понижают парциальное давление компонентов смеси и вызывают тем самым кипение жидкости при меньшей температуре. Простая перегонка нефтяных смесей изображается кривыми однократного испарения (ОИ), устанавливающими зависимость доли отгона от температуры нагрева смеси. Кривые ОИ характеризуют также условные температуры кипения смеси при нечетком их разделении, а начальные и конечные точки кривой ОИ определяют соответственно истинные температуры кипения жидких смесей и конденсации паровых смесей заданного состава. Для равномерно выкипающей смеси кривые ОИ имеют незначительную кривизну в начале и в конце и являются практически прямыми линиями.

При определении фракционного состава нефть и нефтепродукты перегоняют в стандартном приборе при определенных условиях и в системе координат ("температура-отгон") строят график выкипания отдельных углеводородов и их смесей. При нагревании нефтепродукта в паровую фазу, прежде всего, переходят низкокипящие компоненты, обладающие высокой летучестью. По мере отгона низкокипящих компонентов остаток обогащается высококипящими компонентами. Чтобы сделать кипение безостановочным, жидкий остаток непрерывно подогревают. При этом в паровое пространство переходят все новые и новые компоненты с все возрастающими температурами кипения. Отходящие пары конденсируются в измерительной емкости или отбираются по интервалам температур кипения компонентов в виде отдельных нефтяных фракций. Данные разгонки представляют в виде таблицы или графика ("температура кипения - % отгона"). Линии на этом графике называют кривыми разгонки или кривыми фракционного состава. При четком делении смеси (то есть при использовании лабораторных методов периодической ректификации) получают кривые истинных температур кипения (ИТК), при нечетком делении - кривые условных температур кипения (кривые стандартной разгонки). Наиболее важными являются кривые ИТК. Их используют для определения фракционного состава сырой нефти, расчета физико-химических и эксплуатационных свойств нефтепродуктов и параметров технологического режима процессов перегонки и ректификации нефтяных смесей. Различие физико-химических свойств углеводородов используется для разделения топлив на узкие группы углеводородов и идентификации этих групп, а аддитивность некоторых свойств - для расчета количественного содержания групп углеводородов в смеси. При исследовании новых нефтей фракционный состав определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками. Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования кривую истинных температур кипения. Кривая ИТК показывает потенциальное содержание в нефти отдельных (узких) фракций, являющихся основой для последующей их переработки и получения товарных нефтепродуктов (автобензинных, реактивных, дизельных и энергетических топлив, смазочного масла и др.).

Заключение

Нефть, нефтяные фракции и нефтепродукты представляют собой, как правило, смеси очень большого числа близко кипящих компонентов. Число компонентов в бензиновых фракциях может достигать 500, а в масляных фракциях еще больше. Как правило, их разделяют путем перегонки на отдельные части, каждая из которых является менее сложной смесью. Нефтяные фракции, в отличие от индивидуальных соединений, не имеют постоянной температуры кипения. Они выкипают в определенных интервалах температур, то есть имеют температуры начала и конца кипения (Тнк и Ткк). Тнк и Ткк зависят от химического состава фракции. Таким образом, фракционный состав нефти и нефтепродукта показывает содержание в них (в объемных или весовых процентах) различных фракций, выкипающих в определенных температурных пределах. Этот показатель является важнейшей характеристикой нефтяных смесей и имеет большое практическое значение.

К-во Просмотров: 465
Бесплатно скачать Курсовая работа: Фракционный состав нефти