Курсовая работа: Функциональная схема автоматизированного контроля обработки железобетонных изделий в камерах периодического действия
Система авторегулирования, которая обеспечивает автоматическое управление процессом тепловой обработки изделий в кассетных установках, основана на управлении временным циклом обработки с периодическим контролем температур. Регулируемым параметром при этом является температура пара, подаваемого в неподвижную паровую рубашку каждой кассетной установки. Общая продолжительность регулирования по указанному режиму составляет 25% всего времени цикла. Постоянная подача пара в кассету вызывает перегрев полости кассеты и значительное увеличение расхода пара. В этой системе не предусмотрена блокировка на случай падения давления в сети пароснабжения, а также проверка температуры объекта в конце цикла пропаривання с целью устранения возможности выпуска недостаточно пропаренных изделий.
В рассматриваемой системе в качестве регулируемого параметра использовалась температура пара в паровой рубашке, что в малой степени определяет характер распределения температур по объему изделий и не может обеспечивать стабильного режима обработки, предусматриваемого технологическим процессом. Отсутствие температурной блокировки в процессе изотермической выдержки может привести, с одной стороны, к недопустимому перегреву изделий, с другой — к значительному перерасходу пара. Отсутствие период» охлаждения приводит к тому, что распалубка изделий производится при температуре бетона, близкой к 100° С, что неизбежно приведет, при отсутствии специальных теплых складов или камер дозревания, к появлению трещин ввиду резких температурных перепадов.
В описанной ниже системе автоматического регулирования режима тепловлажностной обработки изделий в кассетных установках предусматривается регулирование процесса по температуре бетона в одной из секций.
При окончании процесса формования бригадир или мастер смены при помощи кнопки, находящейся на щите управления кассетами или общем пульте, подает напряжение в цепь моторного исполнительного механизма, который открывает подачу пара в кассету. Пар, поступая в кассету, начинает вытеснять из нее воздух, и при достижении через воздушный клапан определенной величины срабатывает манометрический термометр. При этом исполнительный механизм закрывает воздушный клапан, и кассета начинает работать под заданным давлением. Когда температура в изделии достигает заданной величины, установленный в нем в качестве датчика термометр сопротивления подаст сигнал на малогабаритный электронный автоматический самопишущий и регулирующий мост, который поддерживает температуру изделия в пределах заданного интервала температур, включая или выключая подачу пара в кассету посредством исполнительного механизма. Основным недостатком рассматриваемой системы является отсутствие регулирования подъема температуры и регулирования процесса по температуре бетона в одной из секций установки, что неприемлемо ввиду значительного разброса температур по объемам изделий. Кроме того, установка датчиков в тело изделий нежелательна с конструктивной точки зрения в связи с перемещением секций при распалубке, а также возможности схватывания бетона с металлическим чехлом датчика.
Регулирование процесса тепловлажностной обработки железобетонных изделий в кассетных установках таким образом неприемлемо вследствие того, что значителен перепад температур по объему изделия и нестабилен температурный режим, а также по ряду конструктивных соображений (необходимость перемещения датчика с секцией кассеты, возможность схватывания датчика бетоном и т. д.) и неэффективно, так как распределение температур по секциям паровых рубашек неравномерно и отсутствует прямая зависимость между температурой пара, поступающего в рубашки, и температурой изделия.
В результате исследований, проведенных на опытных кассетных установках, было выяснено, что наиболее полное представление о средней температуре изделия может быть получено путем измерения температуры конденсата, отводимого из паровых рубашек кассет в бак сбора конденсата, так как его температура (а конденсат стекает в обратную трубу из различных полостей паровых рубашек) характеризует среднюю теплоотдачу пара во всех секциях данной кассетной установки, что определяет усредненную температуру пропариваемых изделий.
Стабильность регулирования тепловой обработки системами автоматизации, использующими в качестве регулируемого параметра температуру конденсата, подтвердила правильность сделанного выбора. Вместе с тем, использование температуры конденсата в качестве регулируемого параметра вызывает необходимость устранения влияния на нее ряда внешних факторов, не связанных с ходом тепловой обработки в данной кассетной установке. Температура конденсата может колебаться при наличии пролетного пара в соседней кассетной установке и недостаточно надежной работе системы отвода паровоздушной смеси из бака сбора конденсата; необходимо обеспечить стабильную работу системы пароснабжения всех кассетных установок в данном цехе и интенсивный отвод паровоздушной смеси из бака сбора конденсата.
2. Автоматизация технологического процесса
Рис.1. Автоматизация камеры периодического действия для тепловой обработки железобетонных изделий:
а — функциональная схема; 1 — гребенка; 2 — задвижка с ручным приводом: 3 —приточный затвор: 4 — эжектор; 5 — паропровод; 6 — вентиляционный затвор; 7 — вентилятор; 8 — вентиляционный канал; 9 — камера; 10 — регистр перфорированный; 11 — программный регулятор температуры: 12 — манометр электроконтактный; 13 — манометр; М — регулятор прямого действия «против себя»; 15 — расходомер; Л — магнитный пускатель; С — гудок; КСС — кнопка; 1ЛЕ — сигнальная лампа; 1Э, 1ЭВ — вентиль с электромагнитным приводом: ТС — термометр сопротивления; ДН — диафрагма; КС — конденсационные сосуды; б — структурная схема; 16 — теплоноситель; 17 — регулятор тепловой обработки изделий; 18 — пропарочная камера; 19 — изделие; 20 — задатчик выдержки температур; 21 — задатчнк скорости нарастания температур; 22 — задатчнк температуры паровоздушной среды
3. Средства автоматизации
Технические требования к приборам серии «Технограф». Регистрирующие и показывающие электронные приборы с учетом возросших требований промышленности и растущей конкуренции со стороны аналогичных приборов производства стран ЕЭС должны удовлетворять ряду современных требований, к которым относятся:
- универсальность – возможность обслуживания практически всех существующих типов датчиков температуры, абсолютного и избыточного давления, уровней жидкости и т.п.;
- многоканальность – наиболее часто применяются 12, возможно 24 и более каналов;
- наличие табло для световой индикации на жидких кристаллах (помимо средств регистрации контролируемых параметров на диаграммной бумаге с шириной ленты 100 или 160 мм);
- существенно меньшие массогабаритные характеристики благодаря использованию новых конструкторских решений для принципиально измененной механической части и применению современных конструкционных материалов;
- возможность работы в компьютерных сетях;
- наличие энергозависимого ОЗУ;
- наличие комплексной регистрации: как цифровой, так и аналоговой.
Рассмотрим особенности построения схем приборов «Технограф-160, -100», в которых реализованы указанные требования.
Функциональные возможности. Приборы серии «Технограф» обеспечивают:
• подключение различных датчиков на любые пределы измерений и к любому каналу измерений, что определяется пользователем в зависимости от поставленных перед ним задач (это не требует большого числа вариантов исполнения);
• аналоговую или цифровую регистрацию значений измеряемых параметров каждого канала в циклическом режиме в прямоугольных координатах на диаграммной ленте шириной 100 или 160 мм;
• оперативную замену пользователем типов датчиков и изменение пределов измерений в процессе эксплуатации в зависимости от подключаемых датчиков;
• простоту группового ЗИП, так как имеются всего два варианта исполнения приборов;
• индикацию на цифровом табло значений измеряемых параметров в циклическом режиме или выборочно по любому каналу в единицах измеряемой величины при одновременной регистрации всех каналов;
• сигнализацию при отклонении измеряемых параметров от заданных значений: приборы имеют две независимые установки для любого измерительного канала, каждая из которых может иметь вид «Больше», «Меньше» (с регистрацией на ленте номера канала, времени, даты, номера уставки и значения величины параметра) или «Регулирование» (без регистрации, срабатывают только реле сигнализации);
• регулирование по принципу «раздельная задача – раздельный выход» или «раздельная задача – общий выход»;