Курсовая работа: Генетические алгоритмы
Генетический алгоритм - новейший, но не единственно возможный способ решения задач оптимизации. С давних пор известны два основных пути решения таких задач - переборный и локально-градиентный. У этих методов свои достоинства и недостатки, и в каждом конкретном случае следует подумать, какой из них выбрать.
Рассмотрим достоинства и недостатки стандартных и генетических методов на примере классической задачи коммивояжера (TSP - travelling salesman problem). [20] Суть задачи состоит в том, чтобы найти кратчайший замкнутый путь обхода нескольких городов, заданных своими координатами. Оказывается, что уже для 30 городов поиск оптимального пути представляет собой сложную задачу, побудившую развитие различных новых методов (в том числе нейросетей и генетических алгоритмов).
рис. 1 Кратчайший путь
Каждый вариант решения (для 30 городов) - это числовая строка, где на j-ом месте стоит номер j-ого по порядку обхода города. Таким образом, в этой задаче 30 параметров, причем не все комбинации значений допустимы. Естественно, первой идеей является полный перебор всех вариантов обхода.
рис.2 Переборный метод | Переборный метод наиболее прост по своей сути и тривиален в программировании. Для поиска оптимального решения (точки максимума целевой функции) требуется последовательно вычислить значения целевой функции во всех возможных точках, запоминая максимальное из них. |
Недостатком этого метода является большая вычислительная стоимость. В частности, в задаче коммивояжера потребуется просчитать длины более 1030 вариантов путей, что совершенно нереально. Однако, если перебор всех вариантов за разумное время возможен, то можно быть абсолютно уверенным в том, что найденное решение действительно оптимально.
Второй популярный способ основан на методе градиентного спуска (рис. 7). При этом вначале выбираются некоторые случайные значения параметров, а затем эти значения постепенно изменяют, добиваясь наибольшей скорости роста целевой функции. Достигнув локального максимума, такой алгоритм останавливается, поэтому для поиска глобального оптимума потребуются дополнительные усилия. |
рис. 3 Метод градиентного спуска |
Градиентные методы работают очень быстро, но не гарантируют оптимальности найденного решения. Они идеальны для применения в так называемых унимодальных задачах, где целевая функция имеет единственный локальный максимум (он же - глобальный). Легко видеть, что задача коммивояжера унимодальной не является.
рис. 4 | Типичная практическая задача, как правило, мультимодальна и многомерна, то есть содержит много параметров. Для таких задач не существует ни одного универсального метода, который позволял бы достаточно быстро найти абсолютно точное решение (рис. 8). |
Однако, комбинируя переборный и градиентный методы, можно надеяться получить хотя бы приближенное решение, точность которого будет возрастать при увеличении времени расчета. (рис. 9) |
рис. 5 |
Генетический алгоритм представляет собой именно такой комбинированный метод (рис. 10). Механизмы скрещивания и мутации в каком-то смысле реализуют переборную часть метода, а отбор лучших решений - градиентный спуск. На рисунке показано, что такая комбинация позволяет обеспечить устойчиво хорошую эффективность генетического поиска для любых типов задач. | рис. 10 |
Итак, если на некотором множестве задана сложная функция от нескольких переменных, то генетический алгоритм - это программа, которая за разумное время находит точку, где значение функции достаточно близко к максимально возможному. Выбирая приемлемое время расчета, мы получим одно из лучших решений, которые вообще возможно получить за это время [20].
2.5 Решение задачи коммивояжера.
Задача коммивояжера является классической оптимизационной задачей. Суть ее заключается в следующем. Дано множество из п городов и матрица расстояний между ними или стоимостей переезда (в зависимости от интерпретации). Цель коммивояжера – объехать все эти города по кратчайшему пути или с наименьшими затратами на поездку. Причем в каждом городе он должен побывать один раз и свой путь закончить в том же городе, откуда начал.
Для решения предлагается следующая задача: имеется пять городов, стоимость переезда между которыми представлена следующей матрицей:
1 | 2 | 3 | 4 | 5 | |
1 | 0 | 4 | 6 | 2 | 9 |
2 | 4 | 0 | 3 | 2 | 9 |
3 | 6 | 3 | 0 | 5 | 9 |
4 | 2 | 2 | 5 | 0 | 8 |
5 | 9 | 9 | 9 | 8 | 0 |
Для решения задачи применим следующий генетический алгоритм. Решение представим в виде перестановки чисел от 1 до 5, отображающей последовательность посещения городов. А значение целевой функции будет равно стоимости всей поездки, вычисленной в соответствии с вышеприведенной матрицей. Сразу заметим, что одним из оптимальных решений задачи является последовательность 514235 стоимостью 25.
Заметим, что чем меньше значение цел?