Курсовая работа: Иммунитет растений к насекомым и клещам
К групповой устойчивости относится устойчивость растений к вредителям или же к возбудителям заболеваний нескольких видов, а к комплексной устойчивости – устойчивость как к вредителям, так и к возбудителям заболеваний одновременно. Известно, что многие дикие родичи культурных растений и культурные растения примитивных видов характеризуются как групповой, так и комплексной устойчивостью. Однако в процессе доместификации растений и искусственного отбора многие ценные сорта утратили один из данных видов устойчивости или оба.
Строго говоря, в иммунитете растения большая роль принадлежит неспецифическим барьерам, которые способны обеспечить самозащиту растений от патогенных организмов большого числа видов. К числу этих барьеров в первую очередь принадлежат морфологические (в том числе анатомические), физиологические и биохимические.
1. Морфологические факторы. Покровные ткани – общая внешняя «броня» растений, защищающая их от патогенных агентов (в особенности от микроорганизмов). Большое значение в комплексной и групповой устойчивости растений имеют различные эпидермальные образования и, в первую очередь, железистые и нежелезистые трихомы, а также кутикулярные и эпикутикулярные покровы. Трихомы, покрывающие листья и другие органы растений, факторы устойчивости пшеницы, хлопчатника, картофеля и других культур к тлям, цикадам, клопам-слепнякам и к возбудителям заболеваний многих видов.
Трихомный покров листьев пшеницы – фактор ее устойчивости к красногрудой пьявице и шведским мухам. Трихомы колосковых чешуй пшеницы неблагоприятны для питания гусениц I-го возраста серой зерновой совки и других насекомых (Шапиро, 1985).
В листьях и стеблях злаков содержится кремний, увеличивающий их прочность, уменьшающий потерю ими влаги через транспирацию и повышающий устойчивость к воздействию патогенных организмов.
Исследование микроструктуры воскового покрова листьев показало, что этот покров, очевидно, может обеспечить устойчивость злаков к тлям, блошкам, мучнистой росе и др. вредным организмам (Шапиро, 1985).
2. Физиологические и биохимические факторы. Наличие большого количества нектарников на листьях, листовых черешках, прицветниках и стеблях хлопчатника привлекает к нему для откладывания яиц большое количество хлопковой и табачной совок, совки ни (StenoplusianiHbn.), розового червя (PlectinoforagossypiellaSand) и металловидок (Autogapha) и др. Безнектарниковые растения заселяются бабочками много слабее (Шапиро, 1985).
Затруднения в атакуемости основных биополимеров зерновок пшеницы фактор иммунитета не только к вредной черепашке и к клопам других видов, но и фактор иммунитета к зерновой моли, а также к насекомым, повреждающим пшеницу при хранении. Несомненно, что этот фактор имеет более широкое иммуногенетическое значение, в том числе и для грибов и бактерий (Шапиро и Вилкова, 1981), в частности, при так называемом ферментативно-микозном истощении зерна и т.д. (Дунин и Темирбекова, 1978).
Вещества вторичного обмена, как правило, обладают широким спектром действия (в том числе токсического) на насекомых, клещей, грибы и бактерии. Это их свойство во многих случаях выступает как фактор комплексного иммунитета растений. Например, флавоноиды бензоксизолиноны (МБОА) злаков – важное звено иммунитета кукурузы к саранчевым, кукурузной тле (RhopalosiphummaidisFitch.) кукурузному мотыльку, кукурузной совке (Sesamia (monangriodesLef.) creticaL.) (Шапиро, 1985), и другим возбудителям заболеваний различных таксономических групп. МБОА защищает кукурузу и от поражения некоторыми гербицидами, обеспечивая возможность безвредного использования последних.
Глава 5. Перспективы и некоторые принципы создания комплексно устойчивых сортов
Переход к планомерной селекции на групповую и комплексную устойчивость растений к патогенным организмам требует дальнейшего углубления знаний об их генетических закономерностях (как сложной многофакторной системы), нуждается в разработке методик оценки растений на групповой и комплексный иммунитет. Чрезвычайно важны сведения о своеобразии взаимодействия консументов и растений-риципиентов в каждом регионе. Необходимо подробное изучение взаимоотношений консументов, совместно использующих растения одних и тех же видов, и внутривидовых форм у сортов и гибридов как среды обитания и источника пищи (Шапиро, 1985).
В основу селекции на групповой и комплексный иммунитет должны быть положены:
1. анализ условий и путей формирования групп и комплексов патогенных организмов в каждой из основных сельскохозяйственных зон;
2. оценка сущности экологических и онтогенетических взаимосвязей каждого из патогенов с растением-риципиентом;
3. влияние общих специфических особенностей воздействия патогенов на растения и определение роли отдельных звеньев иммунологической системы растения-риципиента и его иммунологической системы в целом при воздействии патогенных организмов отдельных видов и их групп и комплексов;
4. выяснение возможности совмещения генов, ответственных за групповую и комплексную устойчивость, с генами, обеспечивающими высокую продуктивность, необходимое качество урожая и др. ценные признаки, в генотипе растения;
5. разработка методик оценки растений (исходного и селекционного материала) на групповой и комплексный иммунитет.
Наиболее проста селекция на иммунитет, если взаимоотношения между патогенами растения-риципиента нейтральны. В том случае, если патогенные организмы находятся друг с другом в конкурентных и (или) мутуалистических взаимоотношениях, работа по селекции требует больших усилий – необходима информация о тех сроках онтогенеза растений, когда конкуренция и мутуализм между патогенами проявляются в наибольшей мере. При мутуалистических взаимоотношениях между патогенами также необходимы сведения о степени взаимозависимости и собственно сущности этой зависимости. Все выше перечисленное необходимо для обоснования селекционной программы, для разработки селекционной тактики и для выбора методик оценки степени повреждения растений на каждом из этапов селекционного процесса.
При создании комплексно-устойчивых сортов к фитофагам-симбионтам оценка устойчивости может быть осуществлена при их одновременном поражении упомянутыми фитофагами.
Проведены, например, исследования по комбинированию устойчивости люцерны к люцерновой и гороховой тлям. Эти исследования важны, так как люцерна, устойчивая к одной из упомянутых тлей, не обязательно устойчива к другой, поскольку устойчивость к ним определяется разными генами. Люцерновая тля повреждает люцерну во все сроки ее онтогенеза, тогда как гороховая тля – только в фазе всходов. В связи с этим гороховая тля «выбраковывает» неустойчивые растения, которые гибнут в начале развития, а затем люцерновая тля, повреждая люцерну, устойчивую к гороховой тле, «выбраковывает» растения неустойчивые к ней. К обеим тлям оказываются, таким образом, устойчивы лишь немногие сохранившиеся экземпляры люцерны (Painter, 1968).
Глава 6. Пути селекции устойчивых сортов
§ 6.1 Селекция
Методы селекции растений на иммунитет к патогенным организмам не специфичны. Они представляют собой модификации обычных селекционных методов. Основная трудность в создании иммунных сортов – необходимость одновременного учета особенностей растений и поражающих их вредных организмов.
Одна из основных трудностей в селекции растений на иммунитет к вредителям – генетическая сцепленность признаков растений, отражающих их филогенетическую историю в условиях естественных экосистем (Вавилов). В процессе стихийного одомашнивания и создания и создания высокопродуктивных и высококачественных форм растений система их иммунитета была ослаблена (Вилкова, 1980). В тех случаях, когда селекция осуществляется без внимания к иммунитету, ослабление последнего имеет место и в настоящие время. Необходимо учитывать, что важное свойство иммунных сортов – их способность к сдерживанию и даже подавлению размножения патогенных организмов –
обеспечивает многолетнее оздоровление фитосанитарной обстановки.
В состав программ по селекции растений нередко включается задача выведения сортов абсолютно иммунных к вредителям. Однако, в большинстве случаев возможен лишь относительный иммунитет, причем вновь создаваемый сорт должен быть существенно «иммуннее», т.е. проявлять признаки существенно большей устойчивости к патогену, предшествующего. Даже при частичном повышении иммуноустойчивости новые сорта способны обеспечить уменьшение потерь урожая в данном вегетационном сезоне и многолетние снижение численности вредителей.
Успех в селекции на иммунитет к патогенам во многом зависит от четкого анализа иммуногенетических признаков, которые должны явиться основой для обора иммунных форм (Шапиро, 1985).
Наиболее просто вопрос решается, когда из популяции существующего сорта, возможно, выделить растения, отличающиеся высокой иммуноустойчивостью к одному конкретному патогену. Для такого выделения могут быть использованы различные методы отбора и аналитические методы, учитывающие гетерозиготность популяции сорта.
При составлении селекционных программ очень важно – какого рода опыление существует в популяции данного сорта (перекрестное, самоопыление или популяция относится к промежуточной группе). Селекционная работа на иммунитет к патогену должна вестись с учетом следующих фактов: в популяции растений первой группы единица анализа – отдельное растение, второй – популяция (сорт или линия).
Отбор наиболее эффективен при работе с самоопыляющимися культурами, а также растениями, размножающимися вегетативно (клоновый отбор). С помощью отбора в США успешно созданы, например, сорта люцерны, устойчивые к люцерновой и бородавчатой тле.
Более широко используются методики гибридизации (внутри- и межвидовой) – основа синтетической или комбинационной селекции. Это осуществляется с помощью метода Педигри, метода возвратных скрещиваний и т.д. Важное место здесь принадлежит подбору пар для гибридизации. Необходимо, чтобы хотя бы один из родителей (или оба) характеризовался полигенным иммунитетом. Для управления селекционным процессом необходима информация о закономерностях наследования признаков иммунитета. В процессе гибридизации (простой, сложной и ступенчатой) проводится многократный отбор наиболее ценных форм.
Для увеличения устойчивости сортов (линий) применяются методы насыщающих, или возвратных, скрещиваний (беккроссов) гибридной популяции с донором – носителем генов иммунитета. Пример сложной гибридизации с иммунологическими целями – гибридизация озимой пшеницы для выведения сортов, иммунных к гессенской мухе, в частности, гибридных сортов “Ponka”, “Omaha”, “Pawnee”, “Warrior” и др. с донором иммунности – сортом “Kawvalle” (Рабинович, 1972).