Курсовая работа: Инфологическая модель базы данных "Тестирование"

Введение. 2

1. Анализ предметной области. 4

1.1. Описание предметной области. 4

1.2. Инфологическое моделирование. 5

2. Инфологическое проектирование. 10

2.1. Модель «сущность-связь». 10

2.2. Связи между сущностями. 12

Заключение. 15

Список литературы.. 16

Введение

Система тестирования знаний – программная система, призванная обеспечить проверку знаний учащихся. Во многих случаях разделяют использование таких систем для собственно контроля знаний и для самоконтроля (пробного тестирования).

Целью данной курсовой работы является систематизация, накопление и закрепление знаний о построении инфологической модели тестовой программы по электронному учебнику.

Процесс проектирования БД на основе принципов нормализации представляет собой последовательность переходов от неформального словесного описания информационной структуры предметной области к формализованному описанию объектов предметной области в терминах некоторой модели.

Инфологическая модель применяется на втором этапе проектирования БД, то есть после словесного описания предметной области. Процесс проектирования длительный и требует обсуждений с заказчиком и со специалистами в предметной области. Наконец, при разработке серьезных корпоративных информационных систем проект базы данных является тем фундаментом, на котором строится вся система в целом, и вопрос о возможном кредитовании часто решается экспертами банка на основании именно грамотно сделанного инфологического проекта БД. Следовательно, инфологическая модель должна включать такое формализованное описание предметной области, которое легко будет «читаться» не только специалистами по базам данных. И это описание должно быть настолько емким, чтобы можно было оценить глубину и корректность проработки проекта БД, и конечно, оно не должно быть привязано к конкретной СУБД. Выбор СУБД – это отдельная задача, для корректного ее решения необходимо иметь проект, который не привязан ни к какой конкретной СУБД.

Инфологическое проектирование прежде всего связано с попыткой представления семантики предметной области в модели БД.

В настоящее время практически во всех сферах человеческой деятельности используются базы данных. Данная инфологическая модель базы данных может применяться в различных учебных заведениях. Для обеспечения надежности системы управления данными необходимо выполнить следующие основные требования:

целостность и непротиворечивость данных,

достоверность данных,

простота управления данными,

безопасность доступа к данным.

1. Анализ предметной области

1.1. Описание предметной области

Современное состояние отечественной системы образования характеризуется достаточно высокой насыщенностью высших и других учебных заведений средствами вычислительной техники, что заставляет задуматься над эффективностью ее применения в учебном процессе. Одно из наиболее распространенных направлений - создание и эксплуатация автоматизированных систем контроля знаний (АСКЗ). В настоящее время известно множество практических реализаций систем автоматизированного тестирования как по отдельным дисциплинам (предметные тесты), так и универсальных систем оценивания знаний (т. н. “конструкторы тестов”), полностью или частично инвариантных к конкретным дисциплинам и допускающих их информационное наполнение преподавателями - организаторами тестирования.

Анализ эффективности автоматизированного тестирования в высших и других учебных заведениях показывает, что многие преподаватели настороженно и даже негативно относятся к подобным системам. Среди наиболее существенных недостатков современных подходов к автоматизированному тестированию, называемых в качестве причин такого отрицательного отношения, можно отметить:

необходимость формулирования вариантов ответов на тестовые задания по принципу “один абсолютно правильный” - “N абсолютно неправильных”. Это не дает возможности организовать полноценное тестирование по слабо формализованным дисциплинам, для которых характерна диалектичность знаний (дисциплины общественно-политического, гуманитарного, социально-экономического и т.п. циклов);

примитивность и негибкость процедур расчета итоговой оценки, сводимых либо к определению отношения количества правильных ответов к количеству заданных вопросов, либо к суммированию баллов, назначаемых за каждый правильный ответ;

невозможность автоматизации разнообразных методик контроля знаний, широко применяемых в педагогической практике (оценка широты либо глубины знаний, учет относительной важности отдельных тем или разделов изучаемой дисциплины, выбор сложности теста с учетом уровня подготовленности и самооценки тестируемого, стимуляция правильных ответов и т.п.);

значительная трудоемкость ручного формирования такого множества тестовых заданий и вариантов ответов на каждое из них, которое позволит исключить или минимизировать вероятность предъявления одного и того же задания различным тестируемым при параллельной проверке их знаний.

Особенно ярко указанные недостатки автоматизированного тестирования проявляются при контроле знаний по дисциплинам гуманитарного, социально-экономического и общественно-политического циклов. Степень формализации знаний по этим дисциплинам в силу диалектичности слишком низка, чтобы их наличие могло определяться по тому, насколько хорошо помнит экзаменуемый отдельные факты, точные определения или конкретные формулы и правила их применения.

1.2. Инфологическое моделирование

Исходя из необходимости повышения эффективности учебного процесса и из возможности применения современных информационных технологий наиболее перспективным и целесообразным представляется автоматизация процесса педагогического тестирования. Высокая степень формализации и унификации процедуры тестирования, возможность одновременного проведения тестирования на нескольких компьютерах, а также возможность организации дистанционного тестирования посредством локальной вычислительной сети либо через глобальную информационную сеть Интернет предопределили всеобщий интерес к подобному способу оценивания знаний.

Определенный интерес представляет выявление роли и значимости тестирования на различных этапах контроля и оценивания знаний, а также его применимость при изучении различных дисциплин. Не вызывает сомнений целесообразность применения традиционных АСКЗ при изучении дисциплин, ориентированных на усвоение обучаемыми конечного множества фактов либо однозначно трактуемых правил. Примером подобной ситуации можно считать экзамен на знание правил дорожного движения. Практически безальтернативным представляется применение таких АСКЗ при проведении массового одновременного государственного тестирования знаний выпускников средних школ, хотя руководители центров тестирования отмечают большое количество конфликтов, связанных с оцениванием знаний по дисциплинам языкового цикла, для которых характерна неоднозначность некоторых “истинных” ответов даже с точки наиболее опытных преподавателей-предметников. АСКЗ широко применяются для уменьшения трудоемкости текущего контроля знаний по естественно-научным и техническим дисциплинам (т. н. “срезы”), цель которого состоит в оперативной и массовой проверке остаточных знаний большого количества обучаемых в доэкзаменационный период.

Можно утверждать, что процедуры “классического” тестирования, основанные на парадигме “один абсолютно правильный ответ - N абсолютно неправильных ответов” и выводе итоговой оценки из соотношения количества правильных ответов и заданных вопросов, неадекватны представлениям большинства преподавателей о процессе оценивания знаний. Для многих дисциплин, знания в которых носят принципиально нечеткий характер и не могут быть сведены к однозначным формулировкам (например, дисциплины гуманитарного или общественного циклов), они вообще оказываются неприменимыми.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 148
Бесплатно скачать Курсовая работа: Инфологическая модель базы данных "Тестирование"