Курсовая работа: Информационная безопасность в сетях Wi-Fi

· Контрольный признак целостности (integritycheckvalue, ICV).

Значения всех остальных полей передаются без шифрования. Вектор инициализации должен быть послан незашифрованным внутри фрейма, чтобы приемная станция могла получить его и использовать для корректной расшифровки полезной нагрузки и ICV. На рис. 6 схематично представлен процесс шифрования, передачи, приема и расшифровки фрейма данных в соответствии с алгоритмом WEP.

В дополнение к шифрованию данных спецификация стандарта 802.11 предлагает использовать 32-разрядное значение, функция которого — осуществлять контроль целостности. Этот контрольный признак целостности говорит приемнику о том, что фрейм был получен без повреждения в процессе передачи.

Контрольный признак целостности вычисляется по всем полям фрейма с использо­ванием 32-разрядной полиномиальной функции контроля и с помощью циклического избыточного кода (CRC-32). Станция-отправитель вычисляет это значение и помещает результат в поле ICV. Значение поля ICV включается в часть фрейма, шифруемую по алгоритму WEP, так что его не могут просто так "увидеть" злоумышленники. Получатель фрейма дешифрует его, вычисляет значение ICV и сравнивает результат со значе­нием поля ICV полученного фрейма. Если эти значения совпадают, фрейм считается подлинным, неподдельным. Если они не совпадают, такой фрейм отбрасывается. На рис. 7 представлена диаграмма функционирования механизма ICV.


Рис. 6. Процесс шифрования и дешифрования

Рис. 7. Диаграмма функционирования механизма ICV

Механизмы аутентификации стандарта 802.11

Спецификация стандарта 802.11 оговаривает два механизма, которые могут применяться для аутентификации клиентов WLAN.

· Открытаяаутентификация (open authentication).

· Аутентификация с совместно используемым ключом (sharedkeyauthentication).

Открытая аутентификация по сути представляет собой алгоритм с нулевой аутентификацией (nullauthenticationalgorithm). Точка доступа принимает любой запрос на аутентификацию. Это может быть просто бессмысленный сигнал, используемый для указания на применение именно этого алгоритма аутентификации, тем не менее, открытая аутентификация играет определенную роль в сетях стандарта 802.11. Столь простые требования к аутентификации позволяют устройствам быстро получить доступ к сети.

Контроль доступа при открытой аутентификации осуществляется с использованием заранее сконфигурированного WEP-ключа в точке доступа и на клиентской станции. Эта станция и точка доступа должны иметь одинаковые ключи, тогда они могут связываться между собой. Если станция и точка доступа не поддерживают алгоритм WEP, в BSS невозможно обеспечить защиту. Любое устройство может подключиться к такому BSS, и все фреймы данных передаются незашифрованными.

После выполнения открытой аутентификации и завершения процесса ассоциирования клиент может начать передачу и прием данных. Если клиент сконфигурирован так, что его ключ отличается от ключа точки доступа, он не сможет правильно зашифровывать и расшифровывать фреймы, и такие фреймы будут отброшены как точкой доступа, так и клиентской станцией. Этот процесс предоставляет собой довольно-таки эффективное средство контроля доступа к BSS (рис. 8).


Рис. 8. Процесс открытой аутентификации при различии WEP -ключей

В отличие от открытой аутентификации, при аутентификации с совместно используемым ключом требуется, чтобы клиентская станция и точка доступа были способны поддерживать WEP и имели одинаковые WEP-ключи. Процесс аутентификации с совместно используемым ключом осуществляется следующим образом.

1. Клиент посылает точке доступа запрос на аутентификацию с совместно используемым ключом.

2. Точка доступа отвечает фреймом вызова (challengeframe), содержащим открытый текст.

3. Клиент шифрует вызов и посылает его обратно точке доступа.

4. Если точка доступа может правильно расшифровать этот фрейм и получить свой исходный вызов, клиенту посылается сообщение об успешной аутентификации.

5. Клиент получает доступ к WLAN.

Предпосылки, на которых основана аутентификация с совместно используемым ключом, точно такие же, как и те, которые предполагались при открытой аутентификации, использующей WEP-ключи в качестве средства контроля доступа. Разница между этими двумя схемами состоит в том, что клиент не может ассоциировать себя с точкой доступа при использовании механизма аутентификации с совместно используемым ключом, если его ключ не сконфигурирован должным образом. На рис. 9 схематично представлен процесс аутентификации с совместно используемым ключом.

Рис. 9. Процесс аутентификации с совместно используемым ключом

Аутентификация с использованием МАС-адресов

Аутентификация с использованием МАС-адресов не специфицирована стандартом 802.11. но обеспечивается многими производителями. В ходе аутентификации с использованием МАС-адресов проверяется соответствие МАС-адреса клиента локально сконфигурированному списку разрешенных адресов или списку, хранящемуся на внешнем аутентификационном сервере (рис. 10). Аутентификация с использованием МАС-адресов усиливает действие открытой аутентификации и аутентификации с совместно используемым ключом, обеспечиваемыми стандартом 802.11, потенциально снижая тем самым вероятность того, что неавторизованные устройства получат доступ к сети. Например, администратор сети может пожелать ограничить доступ к определенной точке доступа для трех конкретных устройств. Если все станции и все точки доступа BSS используют одинаковые WEP-ключи, при использовании открытой аутентификации и аутентификации с совместно используемым ключом такой сценарий реализовать трудно. Чтобы усилить действие механизма аутентификации стандарта 802.11, он может применить аутентификацию с использованием МАС-адресов.

Рис. 10. Процесс аутентификации с использованием МАС-адресов

Уязвимость системы защиты стандарта 802.11

К-во Просмотров: 444
Бесплатно скачать Курсовая работа: Информационная безопасность в сетях Wi-Fi