Курсовая работа: Информационная защищенность волоконно-оптических линий связи

Относительно высокая стоимость активных элементов ВОЛС , преобразующих электрические сигналы в свет и свет в электрические сигналы.


Относительно высокая стоимость сварки оптических волокон – для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что, несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

Основные электронные компоненты системы оптической связи изображены на табл. 1.1.

Табл. 1.1.

Электрический сигнал Оптический интерфейс Электрический сигнал

транcивер

=> E/0

Х---х ---х ---х ---Х

Х - оптический соединитель

--- - синтетический кабель

х - места сварки

Трансивер

0/E =>

2. Физические принципы формирования каналов

утечки информации в волоконно-оптических

линиях связи

Изначально ВОЛС имеют более высокую степень защищенности информации от несанкционированного доступа, чем какие-либо другие линии связи [4]. Это связано с физическими принципами передачи информации, которые основываются на модуляции света, распространяющегося в оптическом волноводе. Электромагнитное излучение оптического диапазона выходит за пределы волокна на расстояния не более длины волны (менее 2 мкм) при ненарушенном канале связи, поэтому в окружающем волновод пространстве отсутствуют поля на оптических частотах несущие информацию.

В современных ВОЛС основной способ передачи информации основан на модуляции интенсивности света. Это наиболее простой способ передачи информации по ВОЛС, поэтому каналы утечки информации напрямую связаны с интенсивностью светового потока. Волоконно-оптический кабель представляет собой сложную конструкцию с несколькими слоями покрытия оптического волновода. Параметры его таковы, что в окружающем кабель пространстве информативное оптическое излучение практически не создает каких-либо электромагнитных полей диапазона близкого к частоте модуляции. Вследствие этого для формирования канала утечки информации требуется физический контакт с оптическим каналом передачи информации – оптоволокном. Это требование является одним из главных факторов защищенности информации в волоконно-оптических системах передачи. В дальнейшем мы будем обсуждать только формирование каналов утечки информации, основанное на оптическом контакте с оптоволокном без нарушения канала связи. Также не обсуждаются возможности утечки информации на элементах волоконно-оптической линии связи в местах соединения, разветвления, ретрансляции и других, которые находятся под контролем специальных средств.

Формирование каналов утечки информации из ВОЛС можно разделить на три типа, которые связанны с возможными особенностями распространения света в волоконно-оптических линиях связи [4].

1. Нарушение полного внутреннего отражения

Первый способ несанкционированного доступа связан с отводом части светового потока из оптического волновода при нарушении полного внутреннего отражения. В идеальном случае свет не выходит из оптического волокна вследствие полного внутреннего отражения на его границах. Любые отклонения в распространении света приводят к выходу части излучения из волновода, которое образует канал утечки информации. Варианты формирования каналов утечки информации из ВОЛС при нарушении полного внутреннего отражения можно разделить по виду воздействия на оптоволокно:

механическое воздействие ;

Простейший пример механического воздействия на волокно – изгиб .

При изгибе волокна локальная концентрация механических напряжений вызывает уменьшение угла падения света на границе, который может оказаться меньше предельного угла, и как следствие – нарушение полного внутреннего отражения, то есть часть светового потока выходит из оптоволокна.

Максимальный радиус изгиба R , при котором наблюдается побочное излучение в точке изгиба световода с диаметром сердцевины d , связанное с нарушением полнового внутреннего отражения, определяется выражением:

R £ d n 2 , (2.1)

n 1 n 2

здесь n 1 , n 2 – показатели преломления сердцевины и оболочки световода.

Оценка радиуса изгиба для многомодового волокна с диаметром сердцевины d = 50 мкм и оптической оболочки D = 125 мкм (n 1 =1,481, n 2 = 1,476) показывает, что при R ≤ 3,5 см начинает наблюдаться сильное прохождение излучения в точке изгиба (до 80% значения интенсивности основного светового потока в оптоволокне). Надо отметить, что при оценке изгиба не учитывалось форма светового потока, цилиндрическая форма преломляющей поверхности и другие эффекты, изменяющие показатель преломления оптоволокна, например, фотоупругий эффект. Их вклад значительно меньше.

Кроме рассмотренного случая изгиба волокна, нарушение полного внутреннего отражения при механическом воздействии возможно и при локальном давлении на оптоволокно, что вызывает неконтролируемое рассеяние (в отличие от изгиба) в точке деформации.

акустическоевоздействие ;

Акустическое воздействие на оптическое волокно также изменяет угол падения. При этом в сердцевине оптоволокна создается дифракционная решетка периодического изменения показателя преломления, которая вызвана воздействием звуковой волны. Электромагнитная волна отклоняется от своего первоначального направления, и часть её выходит за пределы канала распространения. Физическое явление, с помощью которого возможно решить поставленную задачу, является дифракция Брэгга на высокочастотном звуке (f > 10 МГц), длина волны L которого удовлетворяет условию:

lL

____> 1 , (2.2)

L2

К-во Просмотров: 574
Бесплатно скачать Курсовая работа: Информационная защищенность волоконно-оптических линий связи