Курсовая работа: Информационное обеспечение в анестезиологии

Пульсоксиметр не требует калибровки в процессе работы, что упрощает его эксплуатацию. Надежность информации, получаемой от прибора, можно проверить, испытывая его на заведомо здоровых людях. Если при этих испытаниях получают цифры НвО2 в пределах физиологической нормы (96-97%), можно считать, что прибор исправен и показания его верны.

Нет нужды обсуждать актуальность постоянной информации о насыщении гемоглобина артериальной крови кислородом. Эта информация особенно важна потому, что клинически гипоксемия проявляет себя цианозом лишь при уровне НbО2 в 70-75%, т.е. лишь при глубокой гипоксемии, чреватой серьёзными нарушениями работы сердца, мозга, печени.

Наиболее вероятными причинами гипоксемии во время наркоза с применением ИВЛ являются : 1. Затянувшаяся интубация трахеи или интубация, проводимая без достаточной кислородной компенсации непосредственно перед процедурой. Пульсоксиметр позволяет не подвергать больного риску гипоксемии и прекращать попытку интубации при снижении НвО2 до 90-88%. После компенсации с помощью ИВЛ маской может быть предпринята повторная попытка интубации трахеи также под контролем газообмена пульсоксиметром.

2.Неисправность респиратора, при которой продолжаются движения меха и даже манометр показывает небольшое положительное давление на вдохе, а дыхательная смесь идет не к больному, а в мешок (отказ клапана отключения наркозного блока).

3.Случайная разгерметизация дыхательного контура. Сигнал тревоги в связи со снижением оксигенации гемоглобина заставит анестезиолога проверить контур и устранить дегерметизацию.

4.Неисправность респиратора, приводящая к значительному снижению эффективного дыхательного объёма и МОД, если эти величины не контролируются точным волюметром.

5.Снижение (прекращение) подачи кислорода по магистрали снабжения.

Все описанные причины приводят к дыхательной недостаточности и во-время не замеченные могут привести к гипоксемии, которая фиксируется пульсоксиметром. Для устранения гипоксемии в перечисленных случаях необходимо во время выяснения причины обеспечить адекватное дыхание больному либо за счет ручной вентиляции мешком при выключенном респираторе, либо с помощью мешка “Амбу”. При невозможности срочно устранить неисправность, должна быть произведена смена аппарата.

Частой причиной гипоксемии, которую фиксирует пульсоксиметр, служит паренхиматозная дыхательная недостаточность. Если при снижении показаний пульсоксиметра исключены все перечисленные причины нарушения объёмов вентиляции легких, если волюметр показывает удовлетворительные данные ДО и МОД, если капнометр не фиксирует гиперкапнии, если наконец, нет снижения содержания кислорода в дыхательной смеси - нужно думать о нарушении вентиляционно-перфузионных отношений в легких. Самой вероятной причиной паренхиматозной дыхательной недостаточности и гипоксемии является шунтирование неоксигенированной крови, протекающей по невентилируемым отделам легких. Чаще всего это связано с погрешностями интубации трахеи: либо интубационная трубка прошла в правый главный бронх и отключила из вентиляции левое легкое, либо кончик трубки перекрыл верхнедолевой бронх справа. При этом иногда продолжается вентиляция (редуцированная) левого бронха. Восстанавливается правильное положение трубки - гипоксемия купируется.

Причиной гипоксемии могут быть и ателектазы в связи с обтурацией бронхов мокротой и, наконец, шунтирование крови в участках легких, бронхи которых закрываются во время выдоха. Эти участки формируют так называемый объём экспираторного закрытия. Эти ателектазы отличаются от обычных обтурационных ателектазов открытостью бронха во время вдоха. И хотя газ во время вдоха в этот бронх войти не может в связи с тем, что во время выдоха газ из бронха не выходил, газообмен в соответствующем отделе легкого происходит благодаря диффузии кислорода из проксимальных отделов бронхиального дерева и углекислоты в обратном направлении. Только этим обстоятельством можно объяснить улучшение оксигенации крови при увеличении концентрации кислорода ( FiO2) во вдыхаемой смеси. Очевидно, что увеличение объёма экспираторного закрытия (у старых больных, при операциях в брюшной полости) во время ИВЛ с высоким FiO2 в дыхательной смеси, как правило не сопровождается гипоксемией. Но если концентрация кислорода снижается - при переходе на самостоятельное дыхание воздухом - развивается гипоксемии. Это показывает пульсоксиметр. Но даже в отсутствие пульсоксиметра a”priori можно считать, что все больные после полостных операций (особенно верхнеабдоминальных) нуждаются в обогащении кислородом вдыхаемого воздуха. Для адаптации к воздуху по нашим данным нужно от 20 до 40 мин.

При работе с пульсоксиметром нужно иметь ввиду особенности формирования оксиметрического сигнала,которые (особенности) имеют непосредственное отношение к достоверности информации, поступающей от прибора. Дело в том, что показания зависят от амплитуды ФПГ и при её значительном снижении, что нередко случается во время наркоза, надежность оксиметрических данных снижается. В некоторых моделях пульсоксиметров при критическом снижении амплитуды пульсовой кривой ФПГ, на табло появляются знаки, предупреждающие о возможной ошибке в показаниях прибора.

Капнометрия.

Капнометрия или измерение концентрации углекислоты в выдыхаемом воздухе, призвана объективно отразить меру адекватности минутной вентиляции легких количеству доставляемой кровью к легким углекислоты. Чем выше уровень обмена и, следовательно, чем больше притекает с кровью СО2, тем большей должна быть и минутная вентиляция легких, чтобы поддерживать константную величину напряжения углекислоты в артериальной крови (РаСО2), которая, как известно, равна 40 мм.рт.ст.

Из этого общего положения вытекает большое количество следствий, которые при капнометрии используются, как критерии газообмена.

Прежде всего, подчеркнём, что концентрация СО2 в выдыхаемом воздухе, а точнее концентрация СО2 в конце выдоха (FetСО2 - end tidal -конец дыхат. цикла -англ.) информирует нас о состоянии общей вентиляции легких (тотальная, но не локальная вентиляция). Иначе говоря, изменения FеtСО2 помогают диагностировать тотальную гиповентиляцию (или гипервентиляцию) или вентиляционную дыхательную недостаточность (в отличии от гипоксемии по пульсоксиметру, которая чаще всего является следствием локальной гиповентиляции, т.е. паренхиматозной дыхательной недостаточности).

Здесь мы должны напомнить известное положение, согласно которому FetСО2 нельзя идентифицировать с РаСО2 и не только потому, что одна величина представляет собой концентрацию и выражена в процентах, а другая - парциальное давление и выражена в мм.рт.ст., но главным образом потому, что артериальная или равная ему альвеолярная концентрация углекислоты выше, чем её концентрация в выдыхаемом воздухе, даже в конце выдоха, поскольку в процессе легочной вентиляции происходит разведение альвеолярного газа менее насыщенными углекислотой порциями выдыхаемого воздуха. Разница между FaCO2 и FetCO2 (концентрация СО2 в арт.крови и в конце выдоха) зависит от вентилируемости легких, т.е. от соотношения ФОЕ (функциональная остаточная емкость - все, что остается в легких после обычного выдоха) и ДО. Чем величина этого соотношения меньше (чем больше ДО при неизменном ФОЕ), тем меньше и разница между FaCO2 и FetCO2, т.к. происходит более быстрое обновление общей емкости легких, а концентрация СО2 от альвеол до “конца выдоха” выравнивается. Есть и другие факторы, влияющие на обсуждаемое различие, например снижение эластичности легких.

Имеющиеся различия между альвеолярной концентрацией СО2 (FACO2) и FetCO2 не являются абсолютным препятствием для использования на практике FetCO2, как “законного” представителя FACO2 и FaCO2 (которые, как известно, равны). Это связано с относительным постоянством разницы у одного и того же человека при стабильных показателях внешнего дыхания. Из этого следует, что однажды определив разницу между РаСО2 и РеtСО2 (РаСО2 определяется по КЩС), в дальнейшем можно вносить поправку в измерения РetCO2, полученные с помощью капнометра. Можно упростить оценку FetCO2, если до операции предложить больному подышать через трубку с отведением к капнометру и определить исходную величину FetCO2, а при последующих измерениях принять её за норму для данного пациента. Опыт показывает, что у большинства больных (при отсутствии выраженной гипо или гипервентиляции), исходные величины FetCO2 колеблются в пределах 4 -5%.

Для облегчения сравнения РаСО2 и FetCO2 приводим правило примерного перевода величин парциального давления в величины концентрации и наоборот (примерное оно потому, что атмосферное давление принято за постоянную величину, равную 750 мм.рт.ст.). РСО2 = FCO2 х 7. FCO2 =РСО2:7.

Анестезиолог получает полезную информацию с помощью капнометра уже при поступлении больного на операционный стол. Как уже было сказано, данные капнометрии позволяют ориентироваться в уровне обмена больного. При интоксикации повышенный обмен у больных с воспалительными осложнениями приводит к гипервентиляции со снижением FetCO2 до 3,5 - 3%. После интубации трахеи и переходе на ИВЛ, уровень обмена определяется величиной МОД

К-во Просмотров: 162
Бесплатно скачать Курсовая работа: Информационное обеспечение в анестезиологии