Курсовая работа: Интелектуальные системы и технологии в экономике
Возможности электронно-вычислительных машин уже никого не удивляют. Компьютеризация различных областей человеческой деятельности, помимо прямого эффекта от внедрения вычислительной техники, зачастую порождает новые классы программных продуктов и технологии их разработки. Любая технология - это прежде всего поле интеллектуальной деятельности для специалистов, однако, в отличии от других видов деятельности технологии разработки программных продуктов немедленно становятся объектами автоматизации, что выводит соответствующий раздел программирования на новый уровень развития.
Типичную эволюцию от конкретных программ до инструментальных средств разработки прошли системы, основанные на знаниях, и в первую очередь - экспертные системы, предназначенные для решения задач из тех областей, где решающую роль играют знания и опыт профессиональной деятельности. В экспертных системах поиск решений осуществляется посредством имитации рассуждений, присущих выдающимся профессионалам. Формализованные знания составляют ядро экспертной системы - ее базу знаний. Остальные блоки системы реализуют функции преобразования знаний и определяются не столько содержимым знаний, сколько свойствами их формальных структур.
1. Понятие искусственного интеллекта. Представление знаний и разработка систем, основанных на знаниях
1.1. Основные понятия искусственного интеллекта
Термин интеллект (intelligence) происходит от латинского intellectus — что означает ум, рассудок, разум; мыслительные способности человека. Соответственно искусственный интеллект (artificial intelligence) — ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий.
Интеллектом называется способность мозга решать (интеллектуальные) задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным обстоятельствам.
В этом определении под термином "знания" подразумевается не только ту информацию, которая поступает в мозг через органы чувств. Такого типа знания чрезвычайно важны, но недостаточны для интеллектуальной деятельности. Дело в том, что объекты окружающей нас среды обладают свойством не только воздействовать на органы чувств, но и находиться друг с другом в определенных отношениях. Ясно, что для того, чтобы осуществлять в окружающей среде интеллектуальную деятельность (или хотя бы просто существовать), необходимо иметь в системе знаний модель этого мира. В этой информационной модели окружающей среды реальные объекты, их свойства и отношения между ними не только отображаются и запоминаются, но и, как это отмечено в данном определении интеллекта, могут мысленно "целенаправленно преобразовываться". При этом существенно то, что формирование модели внешней среды происходит "в процессе обучения на опыте и адаптации к разнообразным обстоятельствам".
1.2. Представление знаний
Представление знаний — вопрос, возникающий в когнитологии (науке о мышлении) и в искусственном интеллекте. В когнитологии он связан с тем, как люди хранят и обрабатывают информацию. В Искусственном интеллекте (ИИ) основная цель — научиться хранить знания таким образом, чтобы программы могли обрабатывать их и достигнуть подобия человеческого интеллекта. Исследователи ИИ используют теории представления знаний из когнитологии. Такие методы как фреймы, правила и семантические сети пришли в ИИ из теорий обработки информации человеком. Так как знание используется для достижения разумного поведения, фундаментальной целью дисциплины представления знаний является поиск таких способов представления, которые делают возможным процесс логического вывода, то есть создание выводов из знаний.
Некоторые вопросы, которые возникают в представлении знаний с точки зрения ИИ:
· Как люди представляют знания?
· Какова природа знаний и как мы их представляем?
· Должна ли схема представления связываться с частной областью знаний, или она должна быть общецелевой?
· Насколько выразительна данная схема представления?
· Должна ли быть схема декларативной или процедурной?
Было очень немного обсуждения вопросов представления знаний и исследования в данной области. Есть хорошо известные проблемы, такие как "spreading activation, " (задача навигации в сети узлов) «категоризация» (это связано с выборочным наследованием; например вездеход можно считать специализацией (особым случаем) автомобиля, но он наследует только некоторые характеристики) и «классификация». Например, помидор можно считать как фруктом, так и овощем.
В области искусственного интеллекта, решение задач может быть упрощено правильным выбором метода представления знаний. Определенный метод может сделать какую-либо область знаний легко представимой. Например диагностическая экспертная система Мицин использовала схему представления знаний основанную на правилах. Неправильный выбор метода представления затрудняет обработку. В качестве аналогии можно взять вычисления в индо-арабской или римской записи. Деление в столбик проще в первом случае и сложнее во втором. Аналогично, не существует такого способа представления, который можно было бы использовать во всех задачах, или сделать все задачи одинаково простыми.
Проблема формирования баз знаний является сложной и многогранной. Если ограничить рассмотрение этой проблемы задачей извлечения личных знаний эксперта, то можно сформулировать основные требования и принципы построения программных систем, автоматизирующих процесс формирования баз знаний. Системы такого рода именуются автоматизированными системами инженерии знаний.
1.3. Задача формирования баз знаний
При всей претенциозности своего названия, инженерия знаний является дисциплиной сугубо прозаической, в ее задачу входит разработка практически полезных программ для слабо "математизированных" областей человеческой деятельности. Главным аргументом в пользу плодотворности такого подхода является факт существования в реальной жизни института экспертов - классных профессионалов, способных решать плохо формализуемые задачи из той или иной проблемной области.
С точки зрения инженерии знаний, в любой прикладной программе (по-крайней мере теоретически) можно выделить компоненту, содержащую знания о проблемной области. Именно эта компонента, именуемая базой знаний, определяет практическую ценность программы. Построение базы знаний требует специальных изысканий в проблемной области, в то время как остальные блоки программы находятся полностью в ведении программиста.
В настоящее время известны четыре основных способа представления знаний, из которых можно конструировать "гибридные" способы представления знаний.
· Продукционные системы
· Семантические сети
· Фреймы
· Логические исчисления
· Комбинированные способы представления знаний
· Модели проблемных областей
2. Распознавание образов и машинный перевод
2.1 Понятие образа
Образ, класс – классификационная группировка в системе классификации, объединяющая определенную группу объектов по некоторому признаку. Образное восприятие мира – одно из свойств живого мозга, позволяющее разобраться в бесконечном потоке воспринимаемой информации и сохранять ориентацию в разрозненных данных о внешнем мире. Воспринимая внешний мир, мы всегда производим классификацию информации, т. е. разбиваем их на группы похожих, но не тождественных явлений. Это свойство мозга позволяет сформулировать такое понятие, как образ.
Способность восприятия внешнего мира в форме образов позволяет с определенной достоверностью узнавать бесконечное число объектов на основании ознакомления с конечным их числом, а объективный характер основного свойства образов позволяет моделировать процесс их распознавания.
2.2 Проблема распознавания образов
Распознавание образов – это задача идентификации объекта или определения каких-либо его свойств по его изображению (оптическое распознавание) или аудиозаписи (акустическое распознавание). В процессе биологической эволюции многие животные с помощью зрительного и слухового аппарата решили эту задачу достаточно хорошо. Создание искусственных систем с функциями распознавания образов остаётся сложной технической проблемой.
Рис. 2.1. Пример объектов обучения.
В целом проблема распознавания образов (ПРО) состоит из двух частей: обучения и распознавания. Обучение осуществляется путем показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа и другими реакциями - на все объекты отличимых образов. Очень важно, что процесс обучения должен завершиться только путем показов конечного числа объектов. В качестве объектов обучения могут быть либо картинки (рис. 2.1), либо другие визуальные изображения (буквы, цифры). Важно, что в процессе обучения указываются только сами объекты и их принадлежность образу. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы. Автоматизация этих процедур и составляет проблему обучения распознаванию образов. В том случае, когда человек сам разгадывает или придумывает, а затем навязывает машине правило классификации, проблема распознавания решается частично, так как основную и главную часть проблемы (обучение) человек берет на себя.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--