Курсовая работа: Использование математических методов и моделей в управлении микроэкономическими системами
2
(4, 5)
3
(4, 7)
15
(5, 6)
8
(6, 7)
3
2. Построение минимального остовного дерева.
Минимальное остовное дерево - это остовное дерево графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.
Шаг 0 : C0 = Ø, = {1, 2, 3, 4, 5, 6, 7}
Шаг 1 : C1 = {1}, = {2, 3, 4, 5, 6, 7}
| |||
|
| ||
|
Шаг 2 : min l (1-2) = 5, j* = {2}, C2 = {1, 2}, = {3, 4, 5, 6, 7}
Шаг 3 : min l (2-3) = 4, j* = {3}, C3 = {1, 2, 3}, = {4, 5, 6, 7}
Шаг 4 : min l (3-4) = 2, j* = {4}, C4 = {1, 2, 3, 4}, = {5, 6, 7}
Шаг 5 : min l (4-5) = 3, j* = {5}, C5 = {1, 2, 3, 4, 5}, = {6, 7}
Шаг 6 : min l (5-6) = 8, j* = {6}, C6 = {1, 2, 3, 4, 5, 6}, = {7}
Шаг 7 : min l (6-7) = 3, j* = {7}, C7 = {1, 2, 3, 4, 5, 6, 7}, = Ø
Минимальное остовное дерево будет выглядеть следующим образом:
Сумма весов ребер остовного дерева равна 5+4+2+3+8+3 = 25 ед.
Пример:
Необходимо соединить населенные пункты под номерами 1 – 7 автомобильными дорогами, при условии, что их протяженность будет минимальна.