Курсовая работа: Исследование концентрирования Cu (II) на анионите АВ-17, иммобилизованном 8-оксихинолином

Силикагель, обработанный смесью эриохром черного Т с жидким анионитом Аликват 336 [44], способен концентрировать следы переходных и щелочноземельных металлов в воде. Щелочные металлы и ионы аммония на этом анионите не сорбируются. Сорбированные металлы элюируют разбавленным раствором хлорной кислоты и определяют атомно-абсорбционным методом. Модифицированный сорбент обеспечивает 250-кратное концентрирование. На этой основе разработан метод колоночной хроматографии для концентрирования ионов Fc(II). Cu(II), Pb(II), Са(И) и Mg(II) из воды и растворов солей натрия, калия и аммония.

Разработан оптоволоконный флуоресцентный сенсор для одновременного определения А1 и Ga или А1 и In с использованием анионообменника Bio-RadAG1-X4, модифицированного люмогаллионом [50]-» Анализ проводят в динамическом режиме. Минимально определяемые концентрации Al, In и Ga составляют соответственно 0,02 10~6 , 3,0-10"6 и 0, 2 10"6 моль-л"1 .

Найдены оптимальные условия сорбции U(VI) на силикагеле силохром С-120 с иммобилизованным на нем 2- (5-бром-2-пирилилазо)-5-диэтиламинофенолом [52] . Предложена новая тест-форма для определения урана в фазе сорбата методом спектроскопии диффузного отражения с пределом обнаружения 35 нг урана при объеме пробы 10 мл.

В качестве чувствительного элемента оптического сенсора для обнаружения ионов РЬ(П) и Th(IV) предложено использовать ксиленоловый оранжевый (КО), иммобилизованный на поверхности полиакрилонитрильного волокна,наполненного тонкодисперсным анионообменником. Отклик чувствительного элемента при концентрациях свинца(П) и тория(1У), равных 110" - 3 10" моль л" , формируется за 1-10 мин.

Диски волокнистого материала, наполненного слабоосновным анионообменником с иммобилизованным на нем арсеназо 1, предложено использовать для определения ионов урана (VI). Диски с арсеназо I пригодны для экспрессного определения урана(У1) в динамическом режиме сорбции методом спектроскопии диффузного отражения. Предел обнаружения урана составляет 3 10" моль л". Как и в большинстве других случаев, иммобилизованный реагент повышает чувствительность и избирательность определения. Кроме того, применение этого способа позволяет расширить диапазон определяемых концентраций по сравнению со способом, в котором используют реакции комплексообразования арсеназом в водных растворах.

Целлюлозные материалы модифицировали [53] с помощью этиленлиаминтетрауксусной кислоты и применяли для определения ионов Cr(III), Fe(II) и Pb(II) методом атомно-абсорбционной спектроскопии. Количество ионов металлов, перешедших из раствора на поверхность сорбента, зависит от времени контактирования фаз и концентрации металла в растворе. Лучше всего сорбируются ионы свинца.

Следовые количества ванадая (1У) и ванадия(У) в воде определяют методом атомно-эмиссионной спектроскопии после концентрирования и разделения на колонках, заполненных силикагелем с иммобилизованными на нем фторированными /2-дикетонами — бензоилтрифторацетоном, теноилтриф-торацетоном. Для определения суммарного содержания ванадия (V) и ванадия (IV) пробу пропускали через колонку [43], заполненную 1.5 г модифицированного силикагеля, со скоростью 10 мл мин"1 вместе с ацетатнымии буферным раствором (рН 6). Для элюирования использовали 6 М соляную кислоту, а внутренним стандартом служил (1-10)10"6 М раствор кобальта(П). Раздельное определение ванадия и ванадия (IV) основано на их неодинаковой сорбции при различных рН. Для сорбции V(V) раствор с рН 3 пропускали через колонку с модифицированным силикагелем, а для извлечения V(IV) прошедший через колонку раствор нейтрализовали до рН 6 и пропускали через вторую колонку с тем же сорбентом. Предел обнаружения ванадия составляет 0.06 мкг л"1 . Ионы железа(Ш), меди(П) и других металлов в больших концентрациях маскируют комплексоном III. Методика была использована для 1-2 мкг • л"1 ванадия в речной воде.Показана возможность применения силикагеля, модифицированного реагентами с этилендиаминовой и этилендиаминтриацетатной функциональными группами, для разделения и концентрирования ванадия (V) и ва-надия(ГУ) [54]. Разделение проводят на двух колонках, заполненных модифицированным силикагелем. В первой колонке находится силикагель, модифицированный соединением с этилендиаминовой функциональной группой, во второй — соединением с этилендиаминтриацетатной группой. При рН 2,5-3,0 в первой колонке сорбируется только ванадий (V). При использовании метода атомно-абсорбционной спектроскопии с индукционно связанной плазмой предел обнаружения ванадия составляет 60 пг мл"1 .

Силикагель, модифицированный цинконом, предложено использовать для концентрирования ионов Na, К, Mg. Са, Al, Zn(II), Cd(II), Pb(II), Mo(II), Co(II), Ni(II) и Cr(III) из водных растворов их солей при рН 1- 9. Разработана методика сорбционного атомно-абсорбционного определения ионов указанных металлов после их элюирования с поверхности модифицированного сорбента растворами соляной или хлорной кислот. Цинкон используют как для разделения элементов, так и для очистки растворов ряда солей от примесей Zn(II), Pb(II), Cd(II), Cu(II).

Разработана методика анионообменного концентрирования ионов Cu(II), Zn(II), Pb(II) и Cd(II) с помощью анионообменника, модифицированного сульфонатными азокрасителями [55].

Известен сорбционно-фотометрический метод, в котором в качестве сорбента применяют анионообменник АВ-17х8, модифицированный нитрокса-миназо (НОА). Предел обнаружения микроколичеств палладия составляет величину порядка 10"4 мкг мл"1 .

Разработана методика [24] разделения ионов Pb(II), Cu(II), Cd(II), Co(II), Zn(II), Ni(II) и Mn(II) в режиме on-lineна картриджах, заполненных сорбентами на основе силикагеля (40 мкм) с иммобилизованной на них гидрокса-мовой кислотой. Градуировочные графики имеют линейный характер в широком интервале концентраций 0,01-5,0 мгл "\ Предел обнаружения для Cu(II), Co(II), Zn(II) и Ni(II) составляет 5-10, для РЬ(П) — 20, для Cd(II) — 30 мкг л"1 . Модифицированный сорбент был использован для анализа водопроводной воды.

Для предварительного концентрирования следовых количеств ионов переходных металлов применяют сорбенты на основе силикагеля ODS С18 или смолы XAD-4 с иммобилизованной на них п - трет-бутилкаликс [4]арентетрагидроксамовой кислотой. Изучены условия сорбции ионов Fe(III), Co(II), Pb(II), Се(П), Mn(II), Ni(II), Zn(II) и Cu(II) в области рН 2-7. Разработана методика хроматографического определения Cu(II), Zn(II) и Mn(II) в природных и других водах.

g) Кислородсодержащие реагенты

Модифицированный в динамических условиях додецилбензолсульфо-новой кислотой силикагель был использован для ион-хроматографического разделения переходных металлов [35]. В качестве элюента применяли растворы солей стронция с комплексообразующими добавками лимонной, винной, щавелевой, пирофосфорной и пикриновой кислот. Установлены оптимальные условия селективного определения катионов Cu(II), Ni (II), Pb(II), Co(II), Ce(II). Fe(II) и Mn(II). Продолжительность анализа составляет 25 мин.

Оптическим сенсором для определения А1 может служить эриохромцианин, иммобилизованный на носителе XAD-2 [18].Содержание металла определяют методом спектроскопии диффузного отражения.

Отделение индия(Ш) от сопутствующих элементов осуществляют с помощью экстракционной хроматографии, используя колонки, заполненные силикагелем с иммобилизованной на нем смесью высокомолекулярных и изомерных третичных карбоновых кислот.

Индий(Ш) количественно сорбируется из ацетатных буферных растворов с рН 4,5-6,0 и десорбируется растворами минеральных кислот. Ионы Fe(III), Ni(II), Co(II), Zn(II), Cu(II), а также U(VI), Cr(III), Al, Tl(III), Ga(III), редкоземельные элементы Zr(IV) и Th(IV) в этих условиях не сорбируются и могут быть отделены путем подбора подходящей подвижной фазы. В работе приведены примеры разделения смесей Al(III) - In(III) Ga(III) Th(IV). иОг(П) - In(III)-Zr(IV) и La(III) - In(III)-Th(IV).

Для анализа объектов окружающей среды предложена методика, в которой концентрирование следовых количеств Cd(II), Cu(II), Mn(II), Zn(II) и Fe(IIl) осуществляют их сорбцией из водных растворов с рН > 6 на силикагеле, модифицированном 1-фенил-3-метил-4-стеароил-5-паразолоном (степень заполнения 4,2%). Для десорбции ионов металлов применяют 1 М раствор соляной кислоты. Содержание металлов в элюате определяют методом атом-но-абсорбционной спектроскопии. Предложенная методика была применена для определения следовых количеств Cu(II), Mn(II) и Zn(II) в водопроводной воде.

Изучены аналитические возможности морина, иммобилизованного на онообменнике КУ-2, а также на сорбенте декстранового типа — сефа-0-25. Такиесорбенты пригодны для селективного определения циркония олова в сточных водах. Минимальная обнаруживаемая концентрация Zr

составляет 1,0, aSn(II) — 0,5 мкг мл"1 .

Водоросли

Изучена [54] сорбция ионов токсичных металлов (Со, Ni, Pb, Cd и др.) из иодных растворов силикагелем, модифицированным водорослями CMorellaVulgaris. Сорбент использовали для концентрирования, после чего металлы определяли методом атомно-абсорбционной спектроскопии.

Предложен способ иммобилизации клеток морских водорослей Algalна силикагеле для извлечения свинца из водных растворов методом колоночной хроматографии. Определение свинца осуществляют после его десорбции смесью азотной и соляной кислот. Адсорбционная емкость модифицированного сорбента по свинцу после 20 циклов адсорбция - элюирование уменьшается на 15%. Сорбент также практически полностью извлекает микроколичества цезия из сильно засоленных растворов.

1.3 .2 Неорганические реагенты

Способы получения и применение неорганических сорбционных материалов на основе различных носителей — угля, цеолитов, песка, древесной целлюлозы; и др. Доступность многих носителей, простота синтеза сорбентов на основе оксидов, гидроксидов, ферроцианидов и других твердых фаз, их механическая прочность и высокие кинетические характеристики обеспечивают рассматриваемым материалам хорошие перспективы в их использовании в процессах обработки природных и сточных вод, жидких радиоактивных отходов и различных растворов.

а. Соли ионов металлов

Отдельную группу составляют сорбенты, модифицированные неорганическими солями, которые предназначены для определения веществ, способных вступать в реакции комплексообразования, осаждения или окисления -восстановления с солями, закрепленными на поверхности.

В работе изучено хроматографическое поведение большого числа неорганических анионов на силикагеле, модифицированном 0,1%-ными водными растворами C11SO4, ZnS04 , MCI2. Для десорбции применяют водно-органические смеси, содержащие минеральные кислоты, а детектирование осуществляют визуально посредством тонкослойной хроматографии с использованием различных проявителей.Описан способ отделения Т1(Ш) от Cd(II), Al, Ni(II), Fe(III), Ag(I) и Pb(II) на силикагеле, модифицированном молибдатом натрия, в смешанном растворе муравьиная кислота - бутанол.

Определение ароматических серосодержащих гетероциклических соединений в сланцевом дегте предложено осуществлять методом хроматографии на колонках, заполненных силикагелем с адсорбированным на его поверхности хлоридом палладия(1У). Для анализа применяют УФ-спектроскопию или фотометрию пламени.

Изучена сорбция в статических условиях ионов цезия на силикагеле с иммобилизованным на нем комплексом — тетрацианокупратом калия. Скорость ионного обмена калия на цезий возрастает по мере уменьшения емкости сорбента относительно указанного комплекса меди(1). Сорбент может быть использован и в динамическом режиме

К-во Просмотров: 200
Бесплатно скачать Курсовая работа: Исследование концентрирования Cu (II) на анионите АВ-17, иммобилизованном 8-оксихинолином