Курсовая работа: Исследование точности численного дифференцирования

Рисунок 4. Относительная погрешность функции y = cos 2 mx при m =1

2) y=cos2 mx , для m =12 [0, 3.14]

выберем шаг=0,3 и интервал [0,3.14]

Метод 1

параметр значение функции

значение

производной

абсолютная погрешность относительная погрешность
0 1 0 0 0
0,3 0,804176 -1,04985 1,93489 0,885041
0,6 0,370091 -1,27735 0,309983 1,58734
0,9 0,037764 -0,50431 2,46618 1,96187
1,2 0,067505 0,663757 2,59507 1,93132
1,5 0,436018 1,31191 0,190069 1,50197
1,8 0,854648 0,932442 1,69494 0,762501
2,1 0,995483 -0,177401 0,0429848 0,134416
2,4 0,748207 -1,14829 2,15186 1,00358
2,7 0,306512 -1,21972 0,445798 1,66552
3 0,016375 -0,335752 2,31931 1,98356

Метод 2

параметр значение функции

значение

производной

абсолютная погрешность относительная погрешность
0 1 0 0 0
0,3 0,804176 -1,04985 1,93489 0,885041
0,6 0,370091 -1,27735 0,309983 1,58734
0,9 0,037764 -0,50431 2,46618 1,96187
1,2 0,067505 0,663757 2,59507 1,93132
1,5 0,436018 1,31191 0,190069 1,50197
1,8 0,854648 0,932442 1,69494 0,762501
2,1 0,995483 -0,177401 0,0429848 0,134416
2,4 0,748207 -1,14829 2,15186 1,00358
2,7 0,306512 -1,21972 0,445798 1,66552
3 0,016375 -0,335752 2,31931 1,98356

Графики

Для первых двух графиков выберем шаг = 0,05

Рисунок 5. Значение функции y=cos2mx при m=12


Рисунок 6. Значение первой производной функции y=cos2mx при m=12

Рисунок 7. Абсолютная погрешность функции y=cos2mx при m=12


Рисунок 8. Относительная погрешность функции y=cos2mx при m=12

3) y = [0. 01,1]

выберем шаг=0,05 на интервале [0. 5,1], графики при этих данных наиболее наглядные данные.

Метод 1

параметр значение функции

значение

производной

абсолютная погрешность относительная погрешность
0,5 4 -16,3249 0,324865 4
0,55 3,30579 -12,2222 0,201185 3,00526
0,6 2,77778 -9,38921 0,129953 2,31481
0,65 2,36686 -7,36961 0,0869563 1,82066
0,7 2,04082 -5,89086 0,0599575 1,45773
0,75 1,77778 -4,78316 0,0424225 1,18519
0,8 1360531 -3,93695 0,0306973 0,976562
0,85 1,38408 -3,27932 0,022655 0,814166
0,9 1,23457 -2,7605 0,0170138 0,685871
0,95 1,10803 -2,34568 0,0129775 0,583175
1 1 -2,01004 0,0100376 0,5

Метод 2

параметр значение функции производная абсолютная относительная
0,5 4 -15,9794 0,0205506 4
0,55 3,30579 -12,0106 0,01042 3,00526
0,6 2,77778 -9,25364 0,0056158 2,31481
0,65 2,36686 -7,27947 0,0031844 1,82066
0,7 2,04082 -5,82902 0,00188505 1,45773
0,75 1,77778 -4,73958 0,00115782 1,18519
0,8 1360531 -3,90552 0,000734272 0,976562
0,85 1,38408 -3,25619 0,000478899 0,814166
0,9 1,23457 -2,74316 0,000320172 0,685871
0,95 1,10803 -2,33248 0,000218821 0,583175
1 1 -1,99985 0,000152533 0,5

В конце работы программы получен текстовый файл, содержащий аргумент функции, значение функции, значение первой производной, абсолютную и относительную погрешность. По этим данным построены графики зависимости аргумента от значения функции, производной, абсолютной и относительной погрешности. Каждый график содержит кривые, полученные вычислениями двумя различными методами, графики примерно совпадают, но все же есть некоторые погрешности.


Приложение

Описание применения

Техническое задание

Исследуйте два метода численного дифференцирования:

где xi – узел равномерной сетки с шагом h .

Предполагается, что отрезок дифференцирования [ a , b ] разбит на n равных частей системой точек (сеткой)

К-во Просмотров: 244
Бесплатно скачать Курсовая работа: Исследование точности численного дифференцирования