Курсовая работа: Исследование влияния режимных факторов прессования древесностружечной плиты на разбухание
Разобьем диапазон от 8,111 до 11,085 на интервалы равной длины. Для определения числа интервалов k воспользуемся формулой:
k = 1 + 3,2ln n, (4.1)
где n – объем выборки.
Значение k, найденное по формуле, округляем до ближайшего целого.
k = 1 + 3,2ln 60 7.
Длина каждого интервала:
(4.2)
Предполагается, что выходная величина подчиняется нормальному закону распределения. Это предположение можно проверить разными способами. Наиболее строгим из них является применение критерия χ2 Пирсона. Для этого необходимо иметь выборку достаточно большого объема: n > 50 – 150. Диапазон изменения выходной величины в этой выборке разбивается на l интервалов так, чтобы эти интервалы покрывали всю ось от - до + и в каждый интервал при этом попало не менее пяти значений выходной величины. Подсчитывают количество mi наблюдений, попавших в каждый интервал. Затем вычисляют теоретические попадания случайной величины в каждый i-й интервал. Для этого используют формулу
pi = Ф(z2) – Ф(z1), где (4.3)
z1 = (- ) / s; z2 = ( - ) / s;
где - среднее арифметическое выборки; s – среднее квадратическое отклонение выборки; - нижняя граница i-го интервала; - верхняя граница i-го интервала; Ф(z) – нормированная функция Лапласа:
Ф(z) =
Значения ее для z = z1 и z = z2 определяют из таблиц. При отыскании значений этой функции для отрицательных значений аргумента следует иметь в виду, что функция Ф(z) нечетная:
Ф(- z) = - Ф(z).
Следующим этапом является вычисление величины χ2 по формуле
χ2 = . (4.4)
По выбранному уровню значимости q и числу степеней свободы k = l – 3 из таблицы отыскивают . Гипотезу о нормальности распределения можно принять, если .
Вычисления удобно вести заполняя таблицу:
Таблица 4.2
№ интервала | mi | z1 | z2 | Ф(z1) | Ф(z2) | pi | pin | ||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
1 | 8,111 | 8,537 | 2 | -2,19 | -2,06 | 0,014 | 0,019 | 0,005 | 0,3 | 2,89 | 9,633 |
2 | 8,537 | 8,963 | 3 | -2,06 | -1,18 | 0,019 | 0,119 | 0,1 | 6 | 9 | 1,5 |
3 | 8,963 | 9,389 | 19 | 1,18 | -0,3 | 0,119 | 0,382 | 0,263 | 15,78 | 10,3684 | 0,657 |
4 | 9,389 | 9,815 | 18 | -0,3 | 0,58 | 0,382 | 0,719 | 0,337 | 20,22 | 4,9284 | 0,244 |
5 | 9,815 | 10,241 | 16 | 0,58 | 1,46 | 0,719 | 0,927 | 0,208 | 12,48 | 12,3904 | 0,993 |
6 | 10,241 | 10,667 | 1 | 1,46 | 2,34 | 0,927 | 0,990 | 0,063 | 3,78 | 7,7284 | 2,045 |
7 | 10,667 | 11,093 | 1 | 2,34 | 3,22 | 0,990 | 0,999 | 0,009 | 0,54 | 0,2116 | 0,392 |
Данные выборки разобьем на 7 интервалов, границы которых указаны во втором и третьем столбцах. В четвертом столбце приведено количество наблюдений, попавших в каждый интервал. Далее по данным таблицы 4.1
вычислены среднее и стандарт s выборки.
= =
=
=
=
=
= 9,535