Курсовая работа: Итерационные методы решения систем линейных алгебраических уравнений

Вообще говоря, процесс Зейделя сходится быстрее, чем метод Якоби. Бывает, что процесс Зейделя сходится, когда простая итерация расходится и т.п. Правда, бывает и наоборот. Во всяком случае, достаточные условия сходимости для метода Якоби достаточны и для сходимости метода Зейделя. Реализовав программы из полученного ответа я увидел, что процесс Зейделя сходится быстрее. Это видно по количеству итераций полученных в программе при приближенной точности =0,000001. Если для метода Якоби они составляют 16, то для метода Зейделя они составляют 9.

Также рассматривая метод верхней релаксации и сравнивая его с двумя другими методами видно, что в методе верхней релаксации количество итераций зависит от заданного числового параметра w. Задавая w=1, количествоитераций равно 9, уменьшая значение параметра от 1 количество итераций начинает расти, в свою очередь увеличивая параметр количество итераций тоже начинает расти.

Приведем таблицу показывающих количество итераций (k) при разных значениях параметра w:

w 0.1 0.4 0.8 0.9 1 1.1 1.2 1.3 1.7 1.9
k 16 15 14 13 9 13 14 15 16 16

Из всего этого можно сделать вывод, что итерационные методы сходятся быстрее, чем точные методы, о чем свидетельствуют как быстрое уменьшение невязок, так и уменьшение изменений неизвестных.

Листинг программы

// –

# include < vcl . h >

#pragma hdrstop

#include «Unit1.h»

// –

#pragma package (smart_init)

#pragma resource «*.dfm»

#include<math.h>

#include<stdlib.h>

TForm1 *Form1;

int n=0, prov=0, k=0;

const x=100;

float A[x] [x], B[x] [x];

float C[x], Y[x];

float *X;

bool fl1=false;

float e;

float v_sh;

// –

__fastcall TForm1:TForm1 (TComponent* Owner)

: TForm(Owner)

{

}

// –

К-во Просмотров: 1014
Бесплатно скачать Курсовая работа: Итерационные методы решения систем линейных алгебраических уравнений