Курсовая работа: Изучение особенностей электрических свойств магнитных жидкостей

В класс ионных проводников входят газы и электролиты, в которых переносчиками электрических зарядов являются ионы и прохождение тока сопровождается переносом вещества.

Изоляционные свойства материалов характеризуются электрическим сопротивлением и пробивным напряжением. Электрическое сопротивление жидкости определяет силу тока, проходящего по ней при заданном напряжении. Величина, обратная сопротивлению, называется объёмной электрической проводимостью.

Класс смешанных проводников состоит из веществ, обладающих частично электронной и частично ионной проводимостью. К ним относятся, например, растворы щелочных и щелочноземельных металлов в жидком аммиаке, некоторые жидкие сплавы и соли, характер проводимости которых меняется в определённом интервале температур, и другие вещества.

Область измерения электропроводности электролитов как одна из областей электрохимических измерений охватывает классы ионных и смешанных проводников. К ним относятся следующие типы веществ:

1) чистые вещества в твёрдом состоянии, в жидком состоянии, расплавленные соли и гидриды;

2) растворы одного или нескольких веществ в твёрдом состоянии, в расплаве, коллоидные и истинные жидкие водные и неводные растворы в неорганических и органических растворителях: окислов, солей кислот, оснований и некоторых элементарных веществ.

Измерительные методы классифицируются по большому количеству характеристик, в частности по роду контакта, по типу выходного сигнала, по характеру напряжения, применяемого для измерения.

В данном эксперименте использовался контактный метод измерения, который характеризуется тем, что в процессе измерения исследуемая магнитная жидкость находится в прямом гальваническом контакте с электродами измерительной ячейки. Однако, хотя они и дают возможность производить точные измерения, но не свободны от погрешностей, обусловленных в частности, в большей или в меньшей степени поляризационными явлениями на электродах. Даже использование мостового метода переменного тока, который обладает высокой точностью измерений и даёт возможность получать непосредственный отсчёт измеряемой величины, при измерении концентрированных растворов появляется погрешность из-за наличия поляризационных явлений.

Эти поляризационные явления при переменном токе выражены в сотни раз слабее, чем при постоянном токе (этим и обусловлено использование переменного тока в эксперименте), и зависят от частоты и концентрации раствора, а также в значительной степени от материала электрода и состояния его поверхности. Несмотря на малую величину поляризации, при измерениях электропроводности она может внести погрешность в измеряемую величину.

1.2. Учёт возможных погрешностей при проведении измерений электрической проводимости.

Изучению поляризации растворов электролитов переменным током посвящено много экспериментальных и теоретических работ. Из их результатов можно сделать выводы:

1) при прохождении переменного тока через раствор в отдельных его точках происходят периодические изменения концентрации;

2) частота этих периодических изменений пропорциональна частоте переменного тока;

3) амплитуда периодических изменений концентрации уменьшается по мере удаления от поверхности электрода, причём такое уменьшение происходит быстрее с увеличением частоты и с уменьшением коэффициента диффузии потенциалопределяющих ионов.

Величина поляризационного сопротивления, а следовательно, и величина погрешности, которое вносится в измеряемое сопротивление или электрическую проводимость, зависят от большого числа различных параметров системы: материал электрода, состав и концентрация раствора, частота и другое. В некоторых случаях погрешность от поляризационного сопротивления достигает 20%.

Наименьшая погрешность наблюдается при измерении с платинными платинированными электродами, которая при частоте 3000 Гц равна погрешности измерения, и следовательно, этой величиной можно пренебречь. Теория явлений, происходящих на поверхности электрода при прохождении переменного тока, и связь этих явлений со свойствами активной поверхности и величиной поляризационного сопротивления ещё не разработана. На основании экспериментальных данных можно предполагать, что величина поляризационного сопротивления связана со строением кристаллической решётки материала электрода, адсорбционными свойствами его активной поверхности.

Состояние поверхности электрода в значительной степени влияет на величину импеданса. Для электродов, изготовленных из двух различных материалов, развитие истинной поверхности приводит к уменьшению поляризационных явлений. Это объясняется тем, что при увеличении истинной поверхности электрода снижается соответственно истинная плотность тока поляризации и, следовательно, поляризационный эффект.

Что касается частоты переменного тока, то многими исследователями было показано, что для обратимых электродов из различных материалов в водных растворах различных концентраций зависимость величины поляризационного сопротивления RS от частоты выражается формулой:

,

где – константа. Из этого выражения следует, что RS уменьшается с повышением частоты и достигает незначительной величины при частоте выше 1 кГц. Это было учтено при проведении данного эксперимента. Использовалась частота 1 кГц.

Выше уже отмечалось, что погрешность, создаваемую поляризационным сопротивлением, при измерениях электропроводности можно значительно уменьшить, применяя платиновые электроды, покрытые платиновую чернью. Этот эффект впервые обнаружен Кольраушем, который рекомендовал проводить осаждение платиновой черни электролизом из раствора хлороплатината с добавлением следов ацетата свинца.

Таким образом, на основании изложенного выше, первым способом уменьшения или исключения погрешности ΔRS является применение платинирования. При этом необходимо учитывать, что платинированные электроды возможно применять только в тех случаях, когда измеряют электропроводность нейтральных и слабо разведённых растворов, имеющих концентрацию выше 0.01 н., если отсутствует опасность, что платиновая чернь будет катализатором нежелательной химической реакции в растворе.

Итак, когда есть условия для применения платинированных электродов, то при соответственном выборе степени платинирования и частоты погрешность, создаваемую поляризационным сопротивлением, можно уменьшить до такой величины, что даже при измерениях, производимых с самой высокой точностью, нет необходимости вводить поправку в результаты измерения на поляризационное сопротивление.

Однако, кроме погрешностей, создаваемых за счёт поляризационного эффекта, необходимо учитывать погрешности от теплового эффекта при протекании тока через ячейку и погрешность от паразитных токов. Для устранения данных видов погрешностей необходимо стремиться к уменьшению напряжения , приложенного к ячейке от источника, которое увеличивает тепловой эффект, также следует предельно сократить продолжительность времени отдельного измерения, нужно увеличить константу ячейки А, что достигается увеличением расстояния между электродами и уменьшением поперечного сечения сосуда. Увеличение объёма сосуда ячейки приводит к уменьшению погрешности измерения, так как для нагревания большого объёма электролита требуется длительное время.

1.3 Особенности измерения электрической проводимости.

В данном экспериментальном исследовании измерялась электрическая проводимость магнитной жидкости в зависимости от концентрации твёрдой фазы. Для этого использовалась двухэлектродные ячейки, одна из которых имеет электроды из гладкой платины, а другая из меди.

Для вычисления электропроводности магнитной жидкости необходимо знать константу ячейки А (м-1 ), которую невозможно определить прямым измерением длины сосуда и площади его поперечного сечения вследствие:

а) рассеивания силовых линий тока, которые не ограничиваются столбиком магнитной жидкости, находящейся точно между электродами;

б) невозможности выдержать точно параллельное расположение электродов и строго определённую их форму;

К-во Просмотров: 301
Бесплатно скачать Курсовая работа: Изучение особенностей электрических свойств магнитных жидкостей