Курсовая работа: Каталитическая конверсия метана водяным паром

1 – трубчатая печь; 2 – конвертор метана второй ступени; 3 – увлажнитель; 4 – котел-утилизатор; 5, 9 – парогазосмесители; 6 – двухступенчатый конвертор окиси углерода; 7 – пароперегреватель; 8 - теплообменник; 10 – аппарат для очистки от соединений серы.

Природный газ под избыточным давлением 0,7 — 0,8 ат поступает в теплообменник 8, в котором подогревается до температуры 380°С за счет тепла газов, исходящих после конверсии окиси углерода. Из теплообменника природный газ подается в аппарат 10, заполненный поглотителем на основе окиси цинка, для связывания соединений серы. Очищенный газ смешивается в аппарате 9 с водяным паром, нагретым до 380°С в пароперегревателе 7 за счет тепла газа после конверсии СО. Парогазовая смесь (отношение пар : газ =5 : 1 ) с температурой 380°С поступает в трубчатую печь 1, снабженную подвешенными трубами, изготовленными из специальной жаропрочной стали. В трубах размещается никелевый катализатор общим объемом 7,5 м3 . Снаружи трубы обогреваются топочными газами, образующимися при сжигании какого-либо газа. Парогазовая смесь проходит через катализатор сверху вниз, при этом температура постепенно возрастает с 400 до 800°С. Степень превращения метана в первой ступени достигает 70%. Конвертированный газ после первой ступени поступает в конвертор шахтного типа 2, куда добавляется воздух. Остаточный метан почти полностью реагирует на никелевом катализаторе при температуре 850 — 900°С. Конвертированный газ после второй ступени содержит до 0,5% метана. Газ из конвертора метана поступает в увлажнитель 3, затем в котел-утилизатор 4 и далее (при 400°С) в конвертор 6.

В последнее время находят применение усовершенствованные трубчатые печи с двойными трубами. Катализатор помешается в кольцевом сечении, образованном внутренней и наружной трубами. Греющие газы подаются с внешней стороны наружной трубы. Природный газ вместе с паром проходит через катализатор сверху вниз, а полученный конвертированный газ — по внутренней трубе снизу вверх. Такая конструкция аппарата позволяет улучшить условия теплопередачи и увеличить температуру в слоях катализатора, не повышая температуру стенок труб.

3.2 Процесс паровой каталитической конверсии метана

В своей работе я рассматриваю каталитическую конверсию метана водяным паром.

Промышленные печи для каталитической конверсии представляют собой агрегаты с большим числом вертикальных труб диаметром 90 — 130 мм и обогреваемой частью длиной 7 — 10 м . Печное пространство облицовано огнеупорным кирпичом; обогрев печей ведут дымовыми газами, образующимися при сжигании углеводородных газов или нафты в специальных горелках. Распределение потока исходного газа по отдельным трубам, заполненным катализатором, а затем сбор конвертированного газа обеспечиваются системой газоподводящих и газоотводящих труб. В конвективном теплообменнике идет вторичное использование тепла выходящих из печи дымовых газов.

Распределение температур внешней стенки трубы при соответствующем профиле температур обогревающего дымового газа и конвертированного газа внутри реактора при потолочном размещении обогревателей. Только высоколегированные хромоникелевые стали с относительно высоким содержанием углерода дают возможность применять сравнительно высокие давления в современных процессах трубчатой конверсии. В условиях эксплуатации трубы подвергаются воздействию внутреннего давления, массы трубы, термических напряжений. Моменты напряжения, возникающие под воздействием массы труб, заполненных катализатором, действуют в аксиальном направлении и должны быть возможно полнее скомпенсированы соответствующим противовесом или пружинной подвеской. Исключительное значение в трубчатой конверсии имеет безотказная работа коллекторной системы, пигтайлей и некоторых других узлов технологического оборудования.

Каталитической конверсией углеводородов в трубчатых печах можно получать водород или газы для синтеза аммиака, метанола и оксо-синтеза. На рис. 4 показана принципиальная схема технологической цепи получения конвертированного газа различного назначения.[5]

Рис. 4. Блок-схема процесса риформинга метана с получением в качестве целевых продуктов аммиака, водорода, метанола, оксида углерода, продуктов оксосинтеза (Г – горючее для печи; К.П. – конечный продукт); 1 – блок первичного риформинга; 2 – блок вторичного риформинга; 3 – блок I ступени конверсии СО ; 4 – блок II ступени конверсии СО ; 5 – система отмывки от СО ; 6 – аппарат тонкой очистки; 7 – аппарат для удаления Н2 ; 8 – компрессор.

Каталитическая конверсия углеводородов (паровая, парокислородная и паро-углекислотная) представляет собой технологическую комбинацию следующих химических реакций (тепловой эффект D H 298,16 кДж/моль ).

СН4 + Н2 О - CO + 3 H 2 + 20,5 кДж/моль

СН4 + 2Н2 О - CO 2 + 4 H 2 + 163,7 кДж/моль

СН 4 + CO2 - 2CO + 2H2 + 248,3 кДж / моль

CO + 3H2 O - CO + H2 - 41,16 кДж / моль

C + O 2 - CO 2 – 393,56 кДж/моль

СН4 + O 2 - CO 2 + 2Н2 О – 802,61 кДж/моль

CO 2 + C - 2 CO + 172,5 кДж/моль

СН4 « 2 + C + 74,94 кДж/моль

H2 O + C - CO + H2 + 131,46 кДж / моль

Процесс конверсии протекает на никелевом катализаторе. Выход Н2 на моль израсходованного в процессе пара наибольший для СН4 и снижается с увеличением содержания углерода в молекуле углеводорода.

Равновесная концентрация конвертированного газа прямо пропорциональна температуре, давлению процесса и соотношению пар : углеводород в исходной конвертируемой смеси. Процесс можно проводить в одну стадию. Однако в ряде случаев его целесообразнее вести в две стадии (две ступени).[5]

Первая стадия процесса парового риформинга протекает в трубах, заполненных катализатором, с подводом тепла извне через стенку трубы. Во второй ступени протекает остаточная конверсия метана кислородом по реакции:

СН4 + 0,5 O 2 - CO + 2Н2

Для смещения равновесия реакции конверсии метана вправо, т. е. в сторону получения водорода, применяется избыток водяного пара по сравнению со стехиометрическим соотношением. Кроме того, избыток пара предотвращает выделение элементарного углерода (сажи) и уменьшает процентное содержание метана в конвертированном газе.

Как видно из уравнения, полную конверсию метана можно осуществить в одну стадию с образованием водорода и двуокиси углерода. При низкотемпературной конверсии в продуктах реакции остается значительное количество метана. При повышенных температурах газ содержит в большом количестве окись углерода. И в том и в другом случае для смещения равновесия реакции конверсии метана вправо требуется значительный избыток пара. Расход пара уменьшается при проведении конверсии метана в две стадии.

Поэтому в промышленных условиях целесообразно процесс получения водорода конверсией метана с водяным паром проводить в две стадии (конверсия метана и конверсия окиси углерода).

При высокой температуре происходит термическое разложение метана и его гомологов с выделением углерода. Выделяющийся углерод оседает на катализаторе, происходит так называемое зауглероживание катализатора, в результате чего снижается его активность и происходит преждевременное его разрушение. Увеличивается сопротивление конвертора, а главное—снижается его производительность. Для предотвращения выделения углерода, кроме избытка пара, требуется, чтобы парогазовая смесь находилась в соприкосновейии с поверхностью катализатора ничтожно малое время, недостаточное для воспламенения смеси. Это условие соблюдается, если скорость нагретой газовой смеси до ее поступления на катализатор больше скорости распространения пламени и исключена возможность обратного проникновения пламени с раскаленного катализатора в смесительное и надкатализаторное пространство.[3]

3.3 Схема химических превращений

К-во Просмотров: 416
Бесплатно скачать Курсовая работа: Каталитическая конверсия метана водяным паром