Курсовая работа: Холодная прокатка листов, полос и лент

3.1.2 Шестеренная клеть

Для распределения крутящего момента одного двигателя между несколькими рабочими валками служит шестеренная клеть. Это – редуктор, передаточное отношение которого равно единице, а роль шестерен выполняют шестеренные валки. Соединительные детали, посредством которых крутящий момент передается от шестеренной клети прокатным валкам, называют шпинделями. Концевые части шпинделей (головки) бывают различной формы; наибольшее распространение получили шпиндели с универсальными и трефовыми головками. В основу конструкции универсальных шпинделей положен принцип шарнира Гука, поэтому шпиндели могут передавать вращение и крутящий момент под углом наклона до 8-10 градусов. Благодаря шарнирной конструкции универсальные шпиндели могут работать плавно; вместе с тем они позволяют передавать большие крутящие моменты, поэтому их применяют для привода валков как листовых и сортовых станов, так и для обжимных, толстолистовых и заготовочных станов.

3.1.3 Двигатель и редуктор

Применяют электродвигатели постоянного и переменного тока синхронные и асинхронные. Двигатели постоянного тока устанавливают на реверсивных станах и станах с широким диапазоном изменения числа оборотов валков, асинхронные двигатели переменного тока применяют, когда для работы прокатного стана не требуется изменение числа оборотов валков в широких пределах. Асинхронные двигатели с регулированием числа оборотов можно также применять аналогично двигателям постоянного тока, а синхронные двигатели переменного тока – на станах с постоянным оборотом валков.

3.1.4 Прокатные валки

Прокатные валки листопрокатных станов имеют гладкую бочку. Их устанавливают в клети на двух опорах (наиболее распространенные тип крепления валков). Основные части валка:

· Бочка – деформирующая часть валка;

· Шейка – служит опорными участками для установки валка в подшипниковых узлах;

· Концевые участки – предназначены для соединения со шпинделями и могут иметь различную конфигурацию в зависимости от конструкции шпинделя.

3.2 Типы станов холодной прокатки

Станы холодной прокатки стали и цветных металлов изготовляются следующих типов:

· листовые — для штучной прокатки;

· листовые широкополосные — для рулонной прокатки;

· лентопрокатные — для прокатки ленты толщиной от 1 мкм до 4 мм и шириной от 20 до 600 мм, сматываемой после прокатки в бунты или рулоны;

· фольгопрокатные — для прокатки полосы толщиной менее 0,1 мм;

· плющильные — для обжатия проволоки в узкую ленту; станы для холодной прокатки труб.

Холодная прокатка рулонной стальной полосы осуществляется на следующих станах:

· Непрерывных четырехвалковых: трех-, четырех-, пяти- и шестиклетевых с бочкой валков длиной 500/2500 мм;

· Реверсивных четырехвалковых одноклетевых с бочкой валков длиной 200/2000 мм;

· Многовалковых реверсивных (главным образом двадцативалковых) с бочкой валков длиной 1200/2000 мм для прокатки тонких (0,1/0,5 мм) и весьма тонких полос (до 2 мкм), полос и лент из легированных сталей и специальных сплавов.

Для дрессировки рулонной стальной полосы (холодная прокатка с небольшими обжатиями в пределах 0,5/3,0%) применяют четырехвалковые станы: одноклетевые нереверсивные, одноклетевые реверсивные, двухклетевые нереверсивные.

Холодную прокатку полос и листов из алюминиевых сплавов осуществляют на реверсивных и нереверсивных одноклетевых четырехвалковых станах с бочкой валков длиной 1700/2800 мм или на непрерывных станах (двух- , пятиклетевых) с бочкой валков той же длины. Холодную прокатку алюминиевой фольги толщиной 5/15 мкм и шириной до 1000 мм ведут на реверсивных или нереверсивных фольгопрокатных станах.

При рулонной прокатке полос с обеих сторон рабочей клети устанавливаются намоточно-натяжные барабаны — моталки, которые служат для разматывания рулонов перед подачей металла в валки и сматывания при выходе из валков. Наиболее производительные листовые станы — непрерывные; они также выгоднее в отношении использования моталок и др. вспомогательного оборудования. Моталки у непрерывных станов располагаются только сзади, а спереди находятся механизмы для подачи рулонов, разматывания их и направления металла в валки первой рабочей клети.

4. Технология производства холоднокатаных листов из углеродистой стали

Исходным материалом для производства холоднокатаных полос и листов служат горячекатаные полосы толщиной 1,8 - 6,0 мм, поступающие в цех холодной прокатки в рулонах.

Конечной продукцией цехов холодной прокатки рассматриваемого типа являются листы и полосы толщиной 0,3 - 3,0 мм, шириной 2350 мм, из углеродистой стали обыкновенного и повышенного качества, а также из низколегированных сталей. Значительная часть листов и полос выпускается с защитными антикоррозионными покрытиями - цинковым, алюминиевым, полимерными и др.)

Поверхность исходных горячекатаных полос покрыта окалиной (оксидами). Если проводить холодную прокатку заготовок в таком состоянии, то окалина будет вдавливаться в металл, резко ухудшая качество его поверхности. Кроме того, окалина, обладая относительно высокой твердостью, способствует износу прокатных валков. Поэтому первой необходимой технологической операцией является удаление окалины с поверхности горячекатаных полос.

Существует ряд способов удаления окалины, однако широкое практическое применение получили два: химический и механический. Химический способ заключается: в растворении оксидов в кислотах; механический - в осуществлении пластической деформации, способствующей отлущиванию окалины с поверхности полосы, или дробеметной (дробеструйной) обработке. В настоящее время оба эти способа часто применяются совместно, причем химический, называемый травлением, является основным, а механический – предварительным.

До середины 60-х годов травление горячекатаных полос в цехах холодной прокатки осуществлялось только в растворах серной кислоты; в настоящее время этот способ вытесняется солянокислотным травлением. Использование соляной кислоты в качестве травильной среды имеет ряд существенных преимуществ. Прежде всего, соляная кислота является более активной, чем серная, особенно по отношению к оксидам, что позволяет сократить время травления. Качество поверхности полос после обработки в соляной кислоте лучше, чем после работки в серной. Сокращается выделение водорода, в связи, с чем уменьшается опасность возникновения водородной хрупкости. Соляная кислота легче и полнее удаляется с поверхности полос в промывных ваннах. Большое значение имеет то обстоятельство, что образующиеся при травлении соли соляной кислоты достаточно легко даются термическому расщеплению на хлористый водород и оксиды железа. Оба этих продукта возвращаются в производство. Хлористый водород, растворяясь в воде, дает свежую соляную кислоту, а оксиды железа используются в порошковой металлургии и других отраслях промышленности.

К-во Просмотров: 167
Бесплатно скачать Курсовая работа: Холодная прокатка листов, полос и лент