Курсовая работа: Хром и методы его определения
Малые количества хрома (микрограммы) можно определять по реакции с дефинилкарбазидом, который окисляется бихроматом в слабокислом растворе с образованием соединения, окрашенного в красно-фиолетовый цвет.
Ванадий, если он присутствует в значительных количествах, мешает определению. Его можно удалить экстракцией хлороформом после переведения в оксихинолят.
Уран не влияет на реакцию с дефинилкарбазидом.
2.4 Атомно-абсорбционный метод
Сущность метода. Прямое определение хрома возможно, когда его концентрация превышает 100 мкг/л. Если приходиться анализировать более разбавленные растворы, то во многих случаях достаточно упарить раствор после подкисления его азотной кислотой; но при анализе очень разбавленных растворов или при необходимости повысить чувствительность определения рекомендуется предварительно выделить металл экстракцией.
Реактивы.
Горючие газы – ацетилен, пропан, водород. Можно пользоваться продажными баллонами, снабженными редукторами.
Воздух. Должен быть отделен от посторонних веществ пропусканием через фильтр и высушиванием.
Деионизированная дистиллированная вода. Ее следует применять при приготовлении всех реактивов, калибровочных стандартных растворов и при разбавлении пробы.
Соляная кислота, концентрированная.
Азотная кислота, концентрированная.
Стандартные растворы металлов. Приготавливают серии стандартных растворов солей различных металлов, концентрацией 5 – 1000 мкг/л, соответствующим разбавлением запасных растворов дистиллированной водой, содержащей 1,5 мл концентрированной азотной кислоты в одном литре. Запасные растворы солей.
Хром. Растворяют 2,8289 г K2Cr2O7 в 200 мл дистиллированной воды, прибавляют 1,5 мл концентрированной HNO3 и разбавляют до 1000 мл такой же водой; 1,00 мл полученного раствора содержит 1 мл хрома.
Ход анализа. Приборы для атомно-абсорбционной спектрофотометрии различают и по конструкции, и по методике работы на них, поэтому следует строго следовать прилагаемой к прибору инструкции. Приводим лишь некоторые ступени хода анализа. Вставляют пустотелую катодную лампу, предназначенную для определения требуемого элемента, и устанавливают на указанную для определения этого элемента длину волны (хром: длина волны – 357,9 нм; горючий газ – ацетилен; газ-окислитель – воздух). Определяют оптимальное соотношение горючего газа и газа-окислителя, измеряя отношение в области, близкой к ориентировочным данным, и отмечают отношение с минимальным поглощением при холостом опыте и с максимальным поглощением определяемого элемента – хрома. Концентрацию последнего выбирают так, чтобы абсорбция была 0,5-0,8. Определяют время достижения равновесного состояния с момента впрыскивания пробы. Находят оптимальную ширину щели, определяют оптимальную высоту оптической оси над горелкой, выявляя максимум абсорбции стандартного раствора при перемещении горелки в вертикальном направлении. Для построения градуировачного графика вводят поочередно в пламя горелки рабочие стандартные растворы, начиная от раствора с минимальным содержанием определяемого элемента: не менее четырех концентраций, включая концентрацию, близкую к той, которая ожидается в анализируемом растворе. Каждое измерение проводят не менее двух раз, при построении графика берут среднее значение.
2.5 Другие методы
Хром количественно осаждается аммиаком. Осадок следует под конец прокаливать в атмосфере водорода, иначе получаются повышенные результаты вследствие окисления хрома в процессе прокаливания. В связи с этим, а также и потому, что хром почти всегда сопровождают посторонние, осаждающиеся аммиаком элементы, как, например, железо, алюминий, фосфор и ванадий, этим методом для определения хрома пользуются лишь в редких случаях.
Осаждение хрома в виде хромата серебра Ag2 CrO4 , хромата ртути Hg2 CrO4 и хромата бария BaCrO4 представляет интерес главным образом для группового разделения и качественного испытания на хром, а не для количественного его определения, так как многие другие элементы также образуют нерастворимые соединения с этими реагентами.
Точные результаты получаются при определении хрома методом, основанным на восстановлении хромата иодистоводородной кислотой и титровании выделяющегося при этом йода раствором тиосульфата натрия. Этот метод, однако, не получил такого широкого распространения, так как железо, медь, мышьяк, ванадий и молибден, которые в состоянии высшей валентности выделяют йод в кислых растворах йодида калия, должны отсутствовать.
Известен колориметрический метод определения хрома с комплексоном III (этилендиаминтетраацетатом натрия). Метод специфичен, мешает только окрашенные катионы (своей окраской), но сравнительно мало чувствителен (оптимальные концентрации хрома 5-80 мг/л). Светопоглощение получаемого красно-фиолетового раствора измеряют, применяя зеленые светофильтры (длина волны 550 нм).
3. Теория определения хрома экспериментально. Качественный анализ компонентов процесса хромирования
Объект исследования: твердые отходы гальванических процессов.
Оборудование и реактивы: пробирки, фарфоровая ступка, пестик, растворы кислот, щелочей, вода дистиллированная, химические стаканы, стеклянная палочка, сухое горючее, складчатый фильтр.
Поступившую для анализа пробу необходимо измельчить в фарфоровой ступке, тщательно перемешать и взять среднюю пробу. Среднюю пробу необходимо отобрать методом квадрата (пробу разложить в виде квадрата на листе белой бумаги и делить диагоналями на четыре треугольника, две противоположные части отбрасываются, а две другие соединяются, снова ссыпаются в фарфоровую ступку и еще раз измельчаются и снова делится квадрат по диагонали). Полученную таким образом среднюю пробу помещают в банку с притертой пробкой.
Затем производят процессы разложения (вскрытия) пробы, растворение.
растворение в воде: небольшое количество средней пробы помещают в пробирку и растворяют в дистиллированной воде при комнатной температуре. С помощью универсальной Ind бумаги определяют характер среды pH и растворение осадка в воде.
проводится также растворение пробы небольшого количества при нагревании, оценивается осадок и среда рН.
растворение в трех мл 2н серной кислоте 0,02 г пробы: наблюдается растворение осадка, изменение цвета окраски, pH среды.
растворение в NH4 Cl, NH4 OH также наблюдаются изменения.
растворение в NaOH (8% и 4н) изменение окраски осадка.
4. Получение результатов
В результате эксперимента делают предположения о наличии ионов железа, алюминия и др., которые подтверждаются специфическими реакциями. Отфильтровав осадок и промыв его дистиллированной водой, растворяют в различных кислотах и щелочах, добавляют специфические реагенты и наблюдают аналитический сигнал.
Если при растворении твердого отхода в HNO3 (конц), добавить персульфат аммония (NH4 )2 S2 O8 , наблюдается окрашивание раствора в оранжевый цвет, то это говорит о наличии ионов Cr+6 , т.е. реакция восстановления ионов хрома 6+ до хрома3+ не произошла или произошла не до конца.
Выводы
Отходы с основных ванн гальванического производства смешиваются, экспериментальные данные могут показать заниженное содержание тяжелых металлов, учитывая это пробы необходимо брать в достаточном количестве и, если это возможно, то отход гальванического производства необходимо отобрать от конкретного технологического процесса.
Список литературы