Курсовая работа: Классификация и структура микроконтроллеров

- Универсальный формат всех микроопераций.

- Равное время выполнения всех машинных команд.

- Практически все операции пересылки данных осуществляются по маршруту регистр – регистр.

Равное время выполнения всех машинных команд позволяют обрабатывать поток командных инструкций по конвейерному принципу, т.е. выполняется синхронизация аппаратных частей с учетом последовательной передачи управления от одного аппаратного блока к другому.

Аппаратные блоки в RISC-архитектуре:

Блок загрузки инструкций включает в себя следующие составные части: блок выборки инструкций из памяти инструкций, регистр инструкций, куда помещается инструкция после ее выборки и блок декодирования инструкций. Эта ступень называется ступенью выборки инструкций.

Регистры общего назначения совместно с блоками управления регистрами образуют вторую ступень конвейера, отвечающую за чтение операндов инструкций. Операнды могут храниться в самой инструкции или в одном из регистров общего назначения. Эта ступень называется ступенью выборки операндов.

Арифметико-логическое устройство и, если в данной архитектуре реализован, аккумулятор, вместе с логикой управления, которая, исходя из содержимого регистра инструкций, определяет тип выполняемой микрооперации. Источником данных помимо регистра инструкций может быть счетчик команд, при выполнении микроопераций условного или безусловного перехода. Данная ступень называется исполнительной ступенью конвейера.

Набор состоящий из регистров общего назначения, логики записи и иногда из RAM образуют ступень сохранения данных. На этой ступени результат выполнения инструкций записываются в регистры общего назначения или в основную память.

Однако к моменту разработки RISC-архитектуры, промышленным стандартом микропроцессоров де-факто стала архитектура Intel x86, выполненная по принципу CISC-архитектуры. Наличие большого числа программ, написанных под архитектуру Intel x86, сделала невозможным массовый переход ЭВМ на RISC-архитектуру. По этой причине основной сферой использования RISC-архитектуры явились микроконтроллеры, благодаря тому, что они не были привязаны к существующему программному обеспечению. Кроме того некоторые производители ЭВМ во главе с IBM так же начали выпускать ЭВМ, построенные по RISC-архитектуре, однако несовместимость программного обеспечения между Intel x86 и RISC-архитектурой в значительной степени ограничивала распространение последних.

Однако, преимущества RISC-архитектуры были столь существенны, что инженеры нашли способ перейти на вычислители, выполненные по RISC-архитектуре, при этом не отказываясь от существующего программного обеспечения. Ядра большинство современных микропроцессоров, поддерживающих архитектуру Intel x86, выполнены по RISC-архитектуре с поддержкой мультискалярной конвейерной обработки. Микропроцессор получает на вход инструкцию в формате Intel x86, заменяем ее несколькими (до 4-х) RISC-инструкциями.

Таким образом, ядра большинства современных микропроцессоров, начиная с Intel 486DX, выполнены по RISC-архитектуре с поддержкой внешнего Intel x86 интерфейса. Кроме того, подавляющее большинство микроконтроллеров, а так же некоторые микропроцессоры выпускаются по RISC-архитектуре.

В современном RISC-процессоре используется не менее 32 регистров, часто более 100, в то время, как в классических ЦВМ обычно 8-16 регистров общего назначения. В результате процессор на 20%-30% реже обращается к оперативной памяти, что также повысило скорость обработки данных. Кроме того, наличие большого количества регистров упрощает работу компилятора по распределению регистров под переменные. Упростилась топология процессора, выполняемого в виде одной интегральной схемы, сократились сроки ее разработки, она стала дешевле.

После появления RISC-процессоров традиционные процессоры получили обозначение CISC – то есть с полным набором команд (Complete Instruction Set Computer).

В настоящее время RISC-процессоры получили широкое распространение. Современные RISC-процессоры характеризуются следующим:

- упрощенным набором команд;

- используются команды фиксированной длины и фиксированного формата,

простые способы адресации, что позволяет упростить логику декодирования команд;

- большинство команд выполняются за один цикл процессора;

- логика выполнения команд с целью повышения производительности ориентирована на аппаратную, а не на микропрограммную реализацию, отсутствуют макрокоманды, усложняющие структуру процессора и уменьшающие скорость его работы;

- взаимодействие с оперативной памятью ограничивается операциями

пересылки данных;

- для обработки, как правило, используются трехадресные команды, что помимо упрощения дешифрации дает возможность сохранять большее число переменных в регистрах без их последующей перезагрузки;

- создан конвейер команд, позволяющий обрабатывать несколько из них одновременно;

- наличие большого количества регистров;

- используется высокоскоростная память.

В RISC-процессорах обработка машинной команды разделена на несколько ступеней, каждую ступень обслуживают отдельные аппаратные средства и организована передача данных от одной ступени к следующей.

Производительность при этом возрастает благодаря тому, что одновременно на различных ступенях конвейера выполняются несколько команд.

Выполнение типичной команды можно разделить на следующие этапы:

К-во Просмотров: 354
Бесплатно скачать Курсовая работа: Классификация и структура микроконтроллеров